Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory-scale tests of Polish hard coal steam gasification process combined with CO2 capture by absorption on CaO in a single step. Polish coal mine Piast was selected as a coal samples supplier based on the coal resources, quality, price and reactivity which makes it a potential supplier for a future full-scale gasification system. Steam gasification tests were conducted in a vertical fixed bed reactor at the temperature range of948-I I 73K in three series: with addition of CaO layered on a coal sample (II), mixed with a coal sample (111) and without adding CaO (I). The CaO increased both the hydrogen yield and content in gaseous products mixture in comparison with series l. As expected, mixing of CaO with coal sample improved the effects in terms of hydrogen yield and concentration in outlet gas when compared with CaO layered on a coal sample. An effective CO2 absorption was observed in tests with CaO mixed with a coal sample and at relatively low temperatures. At higher temperatures a reaction resulting in CO2 concentration increase in the produced gas mixture was observed.
Go to article

Authors and Affiliations

Adam Smoliński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen is the fuel of the future, therefore many hydrogen production methods are developed. At present, fuel cells are of great interest due to their energy efficiency and environmental benefits. A brief review of effective formation methods of hydrogen was conducted. It seems that hydrogen from steam reforming of methanol process is the best fuel source to be applied in fuel cells. In this process Cu-based complex catalysts proved to be the best. In presented work kinetic equations from available literature and catalysts are reported. However, hydrogen produced even in the presence of the most selective catalysts in this process is not pure enough for fuel cells and should be purified from CO. Currently, catalysts for hydrogen production are not sufficiently active in oxidation of carbon monoxide. A simple and effective method to lower CO level and obtain clean H2 is the preferential oxidation of monoxide carbon (CO-PROX). Over new CO-PROX catalysts the level of carbon monoxide can be lowered to a sufficient level of 10 ppm.

Go to article

Authors and Affiliations

Maria Madej-Lachowska
Maria Kulawska
Jerzy Słoczyński
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen as a raw material finds its main use and application on the Polish market in the chemical industry. Its potential applications for the production of energy in fuel cell systems or as a fuel for automobiles are widely analyzed and commented upon ever more frequently. At present, hydrogen is produced worldwide mainly from natural gas, using the SMR technology or via the electrolysis of water. Countries with high levels of coal resources are exceptional in that respect, as there the production of hydrogen is increasingly based on gasification processes. China is such an example. There some 68% of hydrogen is generated from coal. The paper discusses the economic efficiency of hydrogen production technologies employing lignite gasification, comparing it with steam reforming of natural gas technology (SMR). In present Polish conditions, this technology seems to be the most probable alternative for natural gas substitution.

For the purpose of evaluating the economic efficiency, a model has been developed, in which a sensitivity analysis has been carried out. An example of the technological process of energy-chemical processing of lignite has been presented, based on the gasification process rooted in disperse systems, characteristics of the fuel has been discussed, as well as carbon dioxide emission issues. Subsequently, the assumed methodology of economic assessment has been described in detail, together with its key assumptions. Successively, based on the method of discounted cash flows, the unit of hydrogen generation has been determined, which was followed by a detailed sensitivity analysis, taking the main risk factors connected with lignite/coal and natural gas price relations, as well as the price of carbon credits (allowances for emission of CO2) into account.

Go to article

Authors and Affiliations

Michał Kopacz
ORCID: ORCID
Radosław Kapłan
Krzysztof Kwaśniewski
Download PDF Download RIS Download Bibtex

Abstract

HY2SEPS was an EU-funded project directed at the reduction of CO2 emissions. The principal objective of the project was to develop a hybrid membrane-adsorptive H2/CO2 separation technique that would form an integral element of the pre-combustion process. Specific tasks included the derivation of simplified mathematical models for the membrane separation of H2/CO2 mixtures.

In the present study one of the developed models is discussed in detail, namely that with the countercurrent plug flow of the feed and the permeate. A number of simulations were carried out concerning the separation of binary mixtures that may appear following steam conversion of methane. The numerical results were then compared with the experimental data obtained by FORTH/ICEHT. The estimated fluxes of pure CO2, H2, CH4 and N2 are shown alongside those measured experimentally as a function of temperature and CO2 partial pressure in Figs 2 - 7. It is concluded that, in general, CO2 flux increases monotonically with both temperature and CO2 partial pressure. It is also found that the fluxes of hydrogen, methane and nitrogen reach a minimum at a temperature slightly above 323 K. Overall, a good agreement was obtained between the simulations and experiments.

Go to article

Authors and Affiliations

Aleksandra Janusz-Cygan
Marek Tańczyk
Manfred Jaschik
Krzysztof Warmuziński
Download PDF Download RIS Download Bibtex

Abstract

The present study aims at investigating and simulating the hydrogen cycle production at low temperatures using thermochemical reactions. The cycle used in this work is based on the dissociation of water molecules depending on a copper chlorine couple. Furthermore, the proposed method uses mainly thermal energy provided by a solar thermal field. This proposed cycle differs from what is found in the literature. However, most of the thermochemical cycles for hydrogen production work at quite high temperatures which is a technical challenge. Therefore, the maximum temperature used in the present cycle is limited to 500°C. A thermodynamic analysis based on both the first and second laws is performed to evaluate the energy, exergy and efficiency of each reaction as well as the overall exergetic efficiency of the system. Furthermore, a parametric study is conducted to figure out the impact of the surrounding temperatures on the overall exergetic efficiency using commercial energy simulation software. The results show that the cycle can achieve an exergy efficiency of 30.5%.
Go to article

Authors and Affiliations

Omar Benbrika
1
Ahmed Bensenouci
1
Mohamed Tegar
1
Kamal R.A. Ismail
2

  1. Department of Mechanics, Amar Telidji University of Laghouat, B.P. 37G Laghouat 03000, Algeria
  2. University of Campinas, Sao Paulo 13083-970, Brazil
Download PDF Download RIS Download Bibtex

Abstract

Batch dark fermentation of wheat straw and boiled potato wastes at volatile suspended solids (VSS) 5 g VSS/L are examined and compared. Investigations on dark fermentation of potatowastes and wheat straw were carried out at different pH and OFR (oxygen flow rate) values and inoculum pretreatment. The obtained hydrogen yield from waste potato was 70 mL/g VSS, while for hydrolysed wheat straw it amounted to 80 mL/g VSS. The optimum conditions for potato dark fermentation are acidic pH 6.0 and OFR 1.0 mL/h, while for the wheat straw, optimal conditions are pH 6.4 and OFR 4.6 mL/h. The comparison revealed a significant difference in hydrogen production due to the type of substrate, inoculum stressing and DF conditions applied.
Go to article

Bibliography

Achinas S., Li Y., Achinas V., Euverink G.J.W., 2019. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies, 12, 2311. DOI: 10.3390/en12122311.
Aly S.S., Imai T., Hassouna M.S., Kim Nguyen D.M., Higuchi T., Kanno A., Yamamoto K., Akada R., Sekine M., 2018. Identification of factors that accelerate hydrogen production by Clostridium butyricum RAK25832 using casamino acids as a nitrogen source. Int. J. Hydrogen Energy, 43, 5300–5313. DOI: 10.1016/j.ijhydene.2017.08.171.
Bartacek J., Zabranska J., Lens P.N.L., 2007. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod. Biorefin., 1, 201–214. DOI: 10.1002/bbb.17.
Bundhoo Z.M.A., 2019. Potential of bio-hydrogen production from dark fermentation of crop residues: A review. Int. J. Hydrogen Energy, 44, 17346–17362. DOI: 10.1016/j.ijhydene.2018.11.098.
Chaganti S.R., Kim D.H., Lalman J.A., 2012. Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield. Renewable Energy, 48, 117–121. DOI: 10.1016/j.renene.2012.04.015.
Chi C.H., Chen K.W., Huang J.J., Chuang Y.C., Wu M.H., 1995. Gas composition in Clostridium septicum gas gangrene. J. Formos. Med. Assoc., 94, 757–759.
De Cicco A., Jeanty J.-C., 2017. The EU potato sector – statistics on production, prices and trade – Statistics Explained. Statistic Explained. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title= The_EU_potato_sector_-_statistics_on_production,_prices_and_trade.
Dessě P., Lakaniemi A.M., Lens P.N.L., 2017. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Res., 115, 120–129. DOI: 10.1016/j.watres.2017.02.063.
Gallipoli A., Braguglia C.M., Gianico A., Montecchio D., Pagliaccia P., 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci., 89, 167–179. DOI: 10.1016/j.jes.2019.10.016.
Garcia-Bernet D., Steyer J.-P., Bernet N., 2017. Traitement anaérobie des effluents industriels liquides Traitement anaérobie des effluents industriels liquides. Techniques de l’Ingénieur, Réf : J3943 v2.
García Depraect O., Muńoz R., van Lier J.B., Rene E.R., Diaz-Cruces V.F., León Becerril E., 2020. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour. Technol., 307, 123160. DOI: 10.1016/j.biortech.2020.123160.
Han W., Ye M., Zhu A.J., Zhao H.T., Li Y.F., 2015. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol., 191, 24–29. DOI: 10.1016/j.biortech.2015.04.120.
Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32, 172–184. DOI: 10.1016/j.ijhydene.2006.08.014.
Hernández C., Alamilla-Ortiz Z.L., Escalante A.E., Navarro-Díaz M., Carrillo-Reyes J., Moreno-Andrade I., Valdez- Vazquez I., 2019. Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. Int. J. Hydrogen Energy, 44, 13126– 13134. DOI: 10.1016/j.ijhydene.2019.03.124.
Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestóthy N., Bélafi-Bakó K., 2015. Lignocellulose biohydrogen: Practical challenges and recent progress. Renewable Sustainable Energy Rev., 44, 728–737. DOI: 10.1016/j.rser. 2015.01.042.
Laurinavichene T.V., Belokopytov B.F., Laurinavichius K.S., Tekucheva D.N., Seibert M., Tsygankov A.A., 2010. Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int. J. Hydrogen Energy, 35, 8536–8543. DOI: 10.1016/j.ijhydene.2010.02.063.
Leszczyński, W., 2000. Jakość ziemniaka konsumpcyjnego. Żywność, Nauka, Technologia, Jakość, Supl., 4(25), 5–27.
Li Y., Zhang Q., Deng L., Liu Z., Jiang H., Wang F., 2018. Biohydrogen production from fermentation of cotton stalk hydrolysate by Klebsiella sp. WL1316 newly isolated from wild carp (Cyprinus carpio L.) of the Tarim River basin. Appl. Microbiol. Biotechnol., 102, 4231–4242. DOI: 10.1007/s00253-018-8882-z.
Moriarty K., 2013. Feasibility study of anaerobic digestion of food waste in St. Bernard, Louisiana. A study prepared in partnership with the Environmental Protection Agency for the RE-Powering America’s Land Initiative: Siting renewable energy on potentially contaminated land and mine sites. National Renewable Energy Laboratory (NREL), Technical Report, NREL/TP-7A30-57082. DOI: 10.2172/1067946.
Nasirian N., Almassi M., Minaei S., Widmann R., 2011. Development of a method for biohydrogen production from wheat straw by dark fermentation. Int. J. Hydrogen Energy, 36, 411–420. DOI: 10.1016/j.ijhydene.2010.09.073.
Paillet F., Maron, A., Moscovi, R., Steyer J.P., Tapia-Venegas E., Bernet N., Trably E., 2019. Improvement of biohydrogen production from glycerol in micro-oxidative environment. Int. J. Hydrogen Energy, 44, 17802– 17812. DOI: 10.1016/j.ijhydene.2019.05.082.
Patel A.K., Debroy A., Sharma S., Saini R., Mathur A., Gupta R., Tuli D.K., 2015. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour. Technol., 175, 291–297. DOI: 10.1016/j.biortech.2014.10.110.
Sekoai P.T., Ayeni A.O., Daramola M.O., 2019. Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valorization, 10, 1177–1189. DOI: 10.1007/s12649-017-0136-2.
Si B.C., Li J.M., Zhu Z.B., Zhang Y.H., Lu J.W., Shen R.X., Zhang C., 2016. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via twostage highrate anaerobic reactors. Biotechnol. Biofuels, 9, 254. DOI: 10.1186/s13068-016-0666-z.
Słupek E., Kucharska K., Ge˛bicki J., 2019. Alternative methods for dark fermentation course analysis. SN Appl. Sci., 1, 469. DOI: 10.1007/s42452-019-0488-2.
Sołowski G., Konkol I., Cenian A., 2019a. Perspectives of hydrogen production from corn wastes in Poland by means of dark fermentation. Ecol. Chem. Eng. S, 26, 255–263. DOI: 10.1515/eces-2019-0031.
Sołowski G., Konkol, I., Hrycak B., Czylkowski D., 2019b. Hydrogen and methane production under conditions of anaerobic digestion of key-lime and cabbage wastes. Agritech, 39(3), 243–250. DOI: 10.22146/agritech.35848.
Sołowski G., Konkol I., Cenian A., 2020a. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J. Cleaner Prod., 267, 121721. DOI: 10.1016/j.jclepro.2020.121721.
Sołowski G., Konkol I., Cenian A., 2020b. Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy, 138, 105576. DOI: 10.1016/j.biombioe.2020.105576.
Woodward J., Orr M., Cordray K., Greenbaum E., 2000. Enzymatic production of biohydrogen. Nature, 405, 1014–1015. DOI: 10.1038/35016633.
Go to article

Authors and Affiliations

Gaweł Sołowski
1
Izabela Konkol
1
Marwa Shalaby
2
Adam Cenian
1

  1. Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, 14 Fiszera St., 80-231 Gdańsk, Poland
  2. National Research Center in Cairo, Department of Chemical Engineering and Pilot Plant, El Bijouth St., Dokki, Cairo, Egypt 12622
Download PDF Download RIS Download Bibtex

Abstract

A deep eutectic solvent, ethaline (as a typical representative of new-generation room temperature ionic liquids), was used to anodically treat the surface of copper-nickel alloy (55 wt.% Cu). Anodic treatment in ethaline allows flexibly affecting the patterns of surface morphology: formation of stellated crystallites and surface smoothing (i.e. electropolishing) are observed depending on the applied electrode potential. The measured values of roughness coefficient ( Ra ) well correlate with the changes in surface morphology. Anodic treatment of Cu-Ni alloy in ethaline contributes to a considerable increase in the electrocatalytic activity towards the hydrogen evolution reaction in an alkaline aqueous medium, which can be used to develop new high-efficient and inexpensive electrocatalysts within the framework of the concept of carbon-free hydrogen economy.
Go to article

Authors and Affiliations

V. Protsenko
1
ORCID: ORCID
T. Butyrina
1
ORCID: ORCID
D. Makhota
1
ORCID: ORCID
S. Korniy
1 2
ORCID: ORCID
F. Danilov
1
ORCID: ORCID

  1. Ukrainian State University of Chemical Technology, Department of Physical Chemistry, Gagarin Ave., 8, Dnipro, 49005, Ukraine
  2. Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Naukova St. 5, Lviv, 79060, Ukraine

This page uses 'cookies'. Learn more