Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The object of investigation was the one-strand tundish with flow control device such as gas permeable barrier (GPB). The aim of this flow control device was to activate the motion of liquid steel in the tundish longitudinal axis region. Computer simulation of the liquid steel flow and argon behaviour in isothermal turbulent motion conditions was done using the Ansys-Fluent computer program. For the validation of the hydrodynamic patterns obtained from computer simulations, a isothermal tundish glass model was used. Tundish glass model enables the recording of the visualization of fluid medium motion through the particle image velocimetry (PIV) method. Based on computer simulations, the liquid steel flow path lines in the tundish with GPB was obtained. For explain the hydrodynamic phenomena occurring in the tundish working space, the Buoyancy number has been calculated.
Go to article

Authors and Affiliations

A. Cwudziński
Download PDF Download RIS Download Bibtex

Abstract

The tundish prevents unsteady flow affecting on the steel cleanness and temperature. The presented article offers a new design of a ladle shroud (LS) with three holes placed in a special dome (separating the steel flow) steeped in a metal bath. Various options of the LS construction were analysed, as well as its positioning in the tundish in relation to its longitudinal axis. The conducted numerical simulations enabled to assess the impact of the designed ladle shroud on the flow of liquid steel through the tundish. The results showed that the best option is to use the LS with two larger holes and one smaller which activates the flow structure and reduces the rate of the liquid steel velocity in the tundish, limiting the flow turbulence.
Go to article

Authors and Affiliations

H. Suchan
1
ORCID: ORCID
A. Cwudziński
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metallurgy and Metals Technology, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more