Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 46
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of first investigation (from the formation in 1939) Gliwice Channel of polycyclic hydrocarbons concentration in bottom sediments was given. PAHs is a very important element of pollution for point of view of bottom deposits utilisation. From the Gliwice Harbour during the channel concentrations of PAHs are reduce. The most polluted is section of first 10 km. The highest concentration (7528 μgfkg) was determined in the bottom sediments of Kłodnica River, on the water intake to the channel. The smallest concentration was determined on the section from 19 to 28.9 km of channel (175 to 700 μg/kg ). The section from chemical factory Blachownia to Kozie Harbour has concentrations 946.88 μgfkg to 2254.915 μgfkg. During the every flood-gate-sections the PAHs concentrations were increased. The hydraulic conditions are the agent determining the distribution of PAHs by influent on the organic suspended solids sedimentation.
Go to article

Authors and Affiliations

Maciej Kostecki
Marianna Czaplicka
Download PDF Download RIS Download Bibtex

Abstract

This paper described a determination of volatile organic compounds (such as benzene, toluene, ethylbenzene, xylene and phenol) and polycyclic aromatic hydrocarbons (16 by US EPA method) in atmospheric air in Zabrze in 1997. Samples were collected on sorbents (graphitized carbon for BTEX, Chromosorb 102 for phenol and polypropylene filter for PAH) capable of selectivity trapping a wide range of substances. Samples were than analysed using an extraction by solvents followed by capillary gas chromatography with flame ionised detector or ion trap mass detector. The lower limit of detection was circa O.Ol μg/m3 for most compounds. Using a gas chromatograph with ion trap mass detector it was possible to identify 35 organic compounds in urban air in Zabrze. GC-MS is powerful tool for identification organic compounds, but GC with FID detector is most sensitive for quantitative determination of volatile organic compounds.
Go to article

Authors and Affiliations

Rajmund Michalski
Anna Węglarz
Ryszard Skrok
Download PDF Download RIS Download Bibtex

Abstract

Oil derivatives are commonly used and they play a key role in the economy. They are used in many industries. Such big amounts of oil derivatives products generate vast quantity of pollution. Those pollutants can get into the ground and water beyond any control during catastrophes or due to inadequately managed waste and storage. The aim of the paper was to determine the level of oil derivatives pollution in the groundwater on the area of a former airbase, where between 1950 and 1990 the Soviet Army stationed. Analysis was carried out on groundwater samples from three piezometers placed on the area of the former airbase. In the samples some parameters were determined, i.e. temperature, reaction, electrolytic conductivity, the depth of groundwater surface, the content of aliphatic hydrocarbons, monoaromatic and polycyclic aromatic hydrocarbons. Determined amount of dissolved hydrocarbons was large what proves unsatisfactory effectiveness of previous rehabilitation processes.

Go to article

Authors and Affiliations

C. Rosik-Dulewska
T. Ciesielczuk
M. Krysiński
Download PDF Download RIS Download Bibtex

Abstract

Ore and non-ore mineralization in cracks filled with hydrocarbons in the dark grey Upper-Devonian limestone has been found in the Józefka quarry of Upper Devonian limestone and dolomite near the Górno village near Kielce at Holy Cross Mts. Poland. Hydrocarbons in the liquid form and iron and copper sulphides appears hear in the fault zone as joints filling. The wall rocks are impregnated by hydrocarbons giving them black color. Hydrocarbon impregnations appears also following the bedding planes The coexistence of ore mineralization and hydrocarbon suggests their common origin and migration from deep-seated sources, that may be the Silurian Ordovician or Lower to Middle Devonian black shales. The metallic-hydrocarbon compounds were suggested as metals carrier.

Ore and non-ore mineralization in cracks filled with hydrocarbons in the dark grey Upper-Devonian limestone has been found in the Józefka quarry of Upper Devonian limestone and dolomite near the Górno village near Kielce at Holy Cross Mts. Poland. Hydrocarbons in the liquid form and iron and copper sulphides appears hear in the fault zone as joints filling. The wall rocks are spotty impregnated by hydrocarbons giving them black color. Hydrocarbon impregnations appears also following the bedding planes The coexistence of ore mineralization and hydrocarbon suggests their common origin and migration from deep-seated sources, that may be the Silurian Ordovician or Lower to Middle Devonian black shales. The metallic-hydrocarbon compounds were suggested as metals carrier.

Go to article

Authors and Affiliations

Maciej Pawlikowski
Marek Nieć
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article deals with the possibilities of regenerating operating fluids, assessing the composition of new, used, and regenerated oils by evaluating their toxicity and proposing the environmentally friendly regeneration method. The focus lies on two methods of regeneration of waste operating fluids: distillation and electrostatic cleaning. Oil samples, regenerated through these methods, were analyzed using gas chromatography with mass detection. The variance in composition among new, used, and regenerated oils depends on the method of regeneration. Properties of hydrocarbons exhibiting ecotoxic, mutagenic, teratogenic, carcinogenic, and other effects were identified using safety data sheets and databases like Pubchem, ChemicalBook. Analyzing HLP 46 oil (samples of new, unused, used and regenerated oil) revealed that the most toxic hydrocarbons (acetane, heptacosane, nonacosane) were absent after regeneration through electrostatic cleaning. Comparing the composition of operating fluids before and after regeneration, it was established that the most environmentally favorable regeneration method is electrostatic cleaning, which maintains the original properties of the operating fluids intended for use. Operating fluids regenerated via electrostatic cleaning contain fewer toxic hydrocarbons, making them more favorable concerning human health and the environment.
Go to article

Bibliography

[1]. Ajayi, O. E., Adedara, W. & Oyeniyi, E. A. (2018). Termiticidal efficacy of extracts of two indigenous plants against Macrotermes subhyalinus Rambur (Blattodea: Termitidae). Nigeria Journal of Entomology, 34, 1, pp. 109–122. DOI:10.36108/NJE/8102/43(0121).
[2]. Api, A. M., Belsito, D., Biserta, S., Botelho, D., Bruze, M., Burton, A. G., Buschmann, J., Cancellieri, A. M., Dagli, L. M., Date, M., Dekant, W., Deodhar, C., Fryer, D. A., Gadhia, S., Jones, L., Joshi, K., Lapczynski, A., Lavelle, M., Liebler, C. D., Na, M., O´Brien, D., Patel, A., Penning, M. T., Ritacco, G., Rodriguez-Ropero, F., Romine, J., Romine, J., Sadekar, N.. Salvito. D.. Schultz. W. T.. Siddiqi. F., Sipes, G. L., Sullivan, G., Thakkar, T., Tokura, Y. & Tsang, S. (2020). RIFM fragrance ingredient safety assessment. undecane. CAS Registry Number 1120-21-4. Food and Chemical Toxicology, 146, 111745, DOI:10.1016/j.fct.2020.111745.
[3]. Carl Roth GmbH + Co KG. (2015). Safety Data Sheet – Octane, ( link) (16.04.2023)).
[4]. Carl Roth GmbH + Co KG. (2021). Safety Data Sheet – Decane, ( link) (16.04.2023)).
[5]. Carl Roth GmbH + Co KG. (2021). Safety Data Sheet – Undecane, ( link) (16.05.2023)).
[6]. Carl Roth GmbH + Co KG. (2022). Safety Data Sheet – Hexadecane, ( link) (16.05.2023)).
[7]. Curiel-Alegre, S., Velasco-Arroyo, B., Rumbo, C., Ali Khan, H. A., Tamayo-Ramos, A. J., Rad, C., Gallego, R. L. J. & Barros, R. (2022). Evaluation of biostimulation, bioaugmentation and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere, 307, 135638. DOI:10.1016/j.chemosphere.2022.135638.
[8]. Dahlgren, J., Takhar, H., Anderson-Mahoney, P., Kotlerman, J., Tarr, J. & Warshaw, R. (2007). Cluster of systemic lupus erythematosus (SLE) associated with an oil field waste site: a cross sectional study. Environmental Health, 6, 1, pp. 1–15. DOI:10.1186/1476-069X-6-8.
[9]. Decree of the Ministry of the Environment of the Slovak Republic no. 365/2015 Z. z.. establishing the Waste Catalog. https://www.slov-lex.sk/web/en
[10]. Dobrotová, L. & Krilek, J. (2015). Analysis of hydraulic oils using the IcountOS monitoring device. KEGA 019TUZ-4/2015. In XVII. International Scientific Conference of Young Scientists, Bratislava, 2015. ISBN 978-80-228-2781-2.
[11]. Dusa, P., Purice, E., Lupascu, R., Ripanu, I., & Fandarac, G. (2018). Configuring a system for hydraulic oil contamination management. Les Ulis: EDP Sciences. DOI:10.1051/matecconf/201817804008.
[12]. Harbison, R. D., Bourgeois, M. M. & Johnson, G. T. (2015). Gasoline (Petrol, Motor Spirits, Motor Fuel, Natural Gasoline, Benzin, Mogas) [in:] Hamilton and Hardy's industrial Toxicology, Harbison, D. R. & Newfang, A. D. (Eds.). John Wiley & Sons, Tampa, pp. 658–662. DOI:10.1002/9781118834015.ch66.
[13]. Hireco Fluid s.r.o. (2020). Operational diagnostics, laboratory technology, analyses, ( https://www.hirecofluid.sk/obchod/prevadzkova-diagnostika-laboratorna-technika-rozbory) (15.02.2022)).
[14]. Hnilicová, M. (2015). Tribotechnical diagnostics of hydraulic fillings in woodworking equipment. Dissertation thesis, Technical University in Zvolen, Zvolen 2015. ( https://opac.crzp.sk/?fn=detailBiblioFormChildGE93P&sid=54F4268BA0160071D14D5EAE0568&seo=CRZP-detail-kniha (15.03.2022)).
[15]. Hybská, H., Samešová, D. & Fialová, J. (2017). Study of the regeneration cleaning of used mineral oils – ecotoxicological properties and biodegradation. Chemical and Biochemical Engineering Quarterly, 31, pp. 487–496. DOI:10.15255/CABEQ.2017.1109.
[16]. Internal company document, which is not freely available, it is the know-how of the company, on request Internal document of KLEENTEK s.r.o., (Note: https://www.kleentek.cz/en/environment).
[17]. Jeevanantham, S., Saravanan, A., Hemavathy, V. R., Kumar, S.P., Yaashikaa, R. P. & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environmental Technology & Innovation, 13, pp. 264 – 276. DOI:10.1016/j.eti.2018.12.007.
[18]. Junhirun, P., Pluempanupat, W., Yooboon, T., Ruttanaphan, T., Koul, O. & Bullangpoti, V. (2018). The study of isolated alkane compounds and crude extracts from Sphagneticola trilobata (Asterales: Asteraceae) as a candidate botanical insecticide for lepidopteran larvae. Journal of Economic Entomology, 111, 6, pp. 2699–2705. DOI:10.1093/jee/toy246.
[19]. Kireš, M. & Labuda, J. Mechanics of liquids and gases. (2017). ( http://physedu.science.upjs.sk/kvapaliny/index.htm/) (14.01.2021)).
[20]. Kout, S., Ala, A., Belahmadi, M., Hassaine, A., Bordjibal, O., Tahar, A. (2022). Petroleum hydrocarbon contamination assessment and characterization of three quagmire soils in the Gassi El Agreb oil fi eld (Hassi Messaoud, Algeria). Archives of Environmental Protection, 48, 4, pp. 3-12. DOI:10.24425/aep.2022.143704.
[21]. Kumar, P., Lomash, V., Jatav, P., Kumar, A. & Pant, S. (2016). Prenatal developmental toxicity study of n-heneicosane in Wistar rats. Toxicology and Industrial Health, 32, 1, pp. 118–125. DOI:10.1177/0748233713498438. 22. Li, H., Yang, Y., Zhang, D., Li, Y., Zhang, H., Luo, J. & Jones, C. K. (2021). Evaluating the simulated toxicities of metal mixtures and hydrocarbons using the alkane degrading bioreporter Acinetobacter baylyi ADPWH_recA. Journal of Hazardous Materials, 419, 126471. DOI:10.1016/j.jhazmat.2021.126471.
[23]. Lubocons Chemicals, s.r.o. (2007). Safety Data Sheet – Tatralube HYD HLP 46, ( https://www.oil.sk/storage/site/blisty/tatralub/bl-tatralub-hyd-hlp-46-sk.pdf) (16.04.2023)).
[24]. Merck Life Science spol. s.r.o. (2023). Safety Data Sheet - Eicosane ( https://www.sigmaaldrich.com/SK/en/sds/mm/8.20547) (23.05.2023)).
[25]. Merck Life Science spol. s.r.o. (2023). Safety Data Sheet – Heptadecane, ( https://www.merckmillipore.com/Web-CN-Site/zh_CN/-/CNY/ShowDocument-File?ProductSKU=MDA_CHEM-109) (16.05.2023)).
[26]. Morais, B. P., Martins, V., Martins, G., Castro, R. A., Alves, M. M., Pereira, A. M. & Cavaleiro, J. A. (2021). Hydrocarbon toxicity towards hydrogenotrophic methanogens in oily waste streams. Energies, 14, 16, 4830. DOI:10.3390/en14164830.
[27]. Nowak, P., Kucharska, K. & Kamiński, M. (2019). Ecological and health effects of lubricant oils emitted into the environment. International Journal of Environmental Research and Public Health, 16,16, 3002. DOI:10.3390/ijerph16163002.
[28]. Nurdiana, Dantara, I. W. T., Syaban, R. F. M., Mustafa, A. S., Ikhsani, H., Syafitri, E. S., Hapsari, K. N. & Khoirunnisa, A. (2019). Efficacy and side effects studies of Bryophyllum pinnatum leaves ethanol extract in pristane-induced SLE BALB/c mice model, in: AIP Conference Proceedings. AIP Publishing, 2108, pp. 455–462. DOI:10.1063/1.5109991.
[29]. Poonsri, W., Pluempanupat, W., Chitchirachan, P., Bullangpoti, V. & Koul, O. (2015). Insecticidal alkanes from Bauhinia scandens var. horsfieldii against Plutella xylostella L.(Lepidoptera: Plutellidae). Industrial Crops and Products, 65, pp. 170–174. DOI:10.1016/j.indcrop.2014.11.040.
[30]. Regulation of the European Parliament and the Council (EC) no. 1272/2008 of 16 December 2008 on classification, labeling and packaging of substances and mixtures.
[31]. Rim, K. T., Kim, Y. H., Song, S. K., Chung, H. Y., Chang, K. H., Han, H. J., Lee, B. S., Chun, S. Y., Lee, M. Y. & Yu, J. I. (2004). A twenty-eight days inhalation toxicity study of n-decane in Sprague Dawley rats. Environmental Analysis Health and Toxicology, 19, 4, pp. 345–352. DOI:10.5487/TR.2018.34.3.343.
[32]. Sung, J. H., Choi, GB., Kim, Y. H., Baek, MW., Ryu, Y. H., Kim, S. Y., Choi, K. Y., Yu, J. I. & Song, S. K. (2010). Acute and subchronic inhalation toxicity of n-octane in rats. Safety and Health at Work, 1, 2, pp. 192–200. DOI:10.5491/SHAW.2010.1.2.192.
[33]. Štibrányi, L., Timár, P., Báleš, V., Ratvaj, V., Král, R. & Chocholáček, Ľ. (2009). Office of Industrial Property of the Slovak Republic. 5027-2009. 6 July 2009.
[34]. Turan, T. & Nováček, V. (2021). Tribodiagnostics of hydraulics oils and liquids, ( https://www.tribotechnika.cz/images/2021/06/4.pdf (02.01.2022)).
[35]. Unknown. (2014). Production and types of lubricants, ( http://www.tribotechnika.sk/tribotechnika-22014/vyroba-a-druhy-maziv.html/ (21.12.2020)).

Go to article

Authors and Affiliations

Helena Hybská
1
ORCID: ORCID
Eszter Turčániová
1
ORCID: ORCID
Martin Krempa
2
Pavel Timár
3
ORCID: ORCID
Ladislav Štibrányi
4
ORCID: ORCID
Tamás Rétfalvi
5
ORCID: ORCID
Martina Mordáčová
1
ORCID: ORCID

  1. Department of Environmental Engineering, Technical University in Zvolen, Slovakia
  2. Hireco Fluid s.r.o., Bytča, Slovakia
  3. Department of Chemical and Biochemical Engineering, Slovak University of Technology, Bratislava, Slovakia
  4. Department of Organic Chemistry, Slovak University of Technology, Bratislava, Slovakia
  5. Institute of Environment and Nature Protection, University of Sopron, Sopron, Hungary
Download PDF Download RIS Download Bibtex

Abstract

In 1979- 1981 at the King George Island samples of adipose tissue of 5 pinniped species (L. carcinophagus, L. weddelli, H. leptonyx, M. leonina and A. gazella) were collected and the contents of chlorinated hydrocarbons (CHs) were determined with the gas chromatography method. The highest values were recorded in the leopard seal (432.3 -614.7 ppb DDT), the second highest values in the mature elephant seal (73.4 ppb DDT) and the third in the Weddell seal (54.4 — 69.1 ppb DDT). In the Weddell seal the highest level of HCH content (23.3 — 32.1 ppb) was recorded. A decrease in the content of pp'DDE in the adipose tissue of crabeater seal in successive years was recorded, the values being 36.8 ppb in 1979, 24.4 ppb in 1980 and 15.3 ppb in 1981, as well as an increase in the concentration of HCH (15.3 ppb in 1980 and 27.4 ppb in 1981). The contents of CHs in the adipose tissue of Antarctic pinnipeds are 100—1000 times lower than those in the Arctic seals.

Go to article

Authors and Affiliations

Marek A. Karolewski
Aleksy B. Łukowski
Ryszard Halba
Download PDF Download RIS Download Bibtex

Abstract

The concentration of hydrocarbons in the yield of dry matter in ryegrass depended upon the sludge dose. The highest concentrations of hydrocarbons in ryegrass were found in a control object. In objects fertilized with waste activated sludge the highest concentration of hydrocarbons was found in ryegrass with 20% ofwaste activated sludge. After a two-year experiment, the highest concentration of hydrocarbons was found in the control object. In soil materials fertilized with waste activated sludge the concentration of hydrocarbons grew along with the sludge dose.
Go to article

Authors and Affiliations

Stanisław Kalembasa
Beata Wiśniewska
Mariusz Kluska
Download PDF Download RIS Download Bibtex

Abstract

The concentration of hydrocarbons in the yield of dry matter in ryegrass depended upon the sludge dose. The highest concentrations of hydrocarbons in ryegrass were found in a control object. In objects fertilized with waste activated sludge the highest concentration of hydrocarbons was found in ryegrass with 20% ofwaste activated sludge. After a two-year experiment, the highest concentration of hydrocarbons was found in the control object. In soil materials fertilized with waste activated sludge the concentration of hydrocarbons grew along with the sludge dose.
Go to article

Authors and Affiliations

Anna Kiepas-Kokot
Anna Iwaniuk
Download PDF Download RIS Download Bibtex

Abstract

In the paper the results on self-purification of mine waters contaminated with polycyclic aromatic hydrocarbons (PAH) have been presented. Samples of waters from the .Zicrnowit" coal mine have been used. Concentrations of PAHs in the deposits and supernatant waters after selected specific periods of time were evaluated. The quantitative and qualitative analyses of 16 selected PAHs (as recommended by the USEPA) were carried out, as well as investigations on the PAH concentration changes versus time in deposits and supernatant waters. Extension of the sedimentation time resulted in increased concentrations of carcinogenic PAHs in deposits. The observed PAHs concentrations in deposits were high and comparable with these found usually in sewage sludge. Outing the whole sedimentation process sorption of compounds which are easily bounded on suspension (with log kow > 7) took place, which led do the decrease of PAH concentration in supernatant waters. 'The accumulation of PAHs in deposits and their desorption lo supernatant waters during the sedimentation process were not signi fi cant.
Go to article

Authors and Affiliations

Beata Caban-Pabian
Download PDF Download RIS Download Bibtex

Abstract

The effects of using three different biopreparations (one natural N2 and two commercial Kl and K2) in petroleum hydrocarbons age-polluted clay soil were studied. The samples of soil were taken from refinery in Czechowice-Dziedzice and classified as heavily degraded in proportion C:N = 100:0,7. Changes after introducing biopreparations into soil (bioaugmentation), their influence on microflora development and effects of removing polluting substances were studied. Bioaugmentation did not result in intensive growth of bacterial number, which was on the control sample's level during experiment. Soil's biodegradation activity also increased in level smaller than expected.
Go to article

Authors and Affiliations

Ewa Zabłocka-Godlewska
Korneliusz Miksch
Download PDF Download RIS Download Bibtex

Abstract

Petroleum pollution is still one or crucial environmental problems. Bioaugmcntation is a popular technique used in soil remediation. The aim of soil inoculation is acceleration or decomposition processes or improving the degradation efficiency. Effectiveness of bioaugmentation processes depends on the number and activity of microorganisms adapted to pollutant degradation. Enhancement of microorganisms' activity can be reached by the use or plants. Roots or plants excrete organic substances that stimulate microorganisms' growth. Among different species or plants interesting arc papilionaceous plants because of their nitrogen fixation ability in symbiosis with bacteria. The effects or using papilionaceous plants (Trifolium pratense), multiplied autochthonous microorganisms and commercial biopreparation in aged-petroleumpolluted soil were studied. The samples of soil were taken from the refinery in Czechowice-Dziedzice (Poland) and classified as heavily degraded with a C/N-ratio or 100:0.7. Investigations were conducted for 14 weeks. Microbiological analysis included: total bacteria, fungi, Actinomycetes and Pscudonionas counts. Concentration or heavy fractions, TPH (total petroleum hydrocarbons) and PAHs (polycyclic aromatic hydrocarbons) were measured at the start and at the end of the experiment. Presence of pap il ionaceous plant (Trifolium pratensei enhanced the growth or microorganisms, nitrogen concentration and biodegradation processes (removal of 63% or TPH, 44% or heavy fractions, 9% or 4-6 aromatic PAHand 80% of 2-3 aromatic PAH) in polluted soil. An increasing number of Pseudomonas species was observed in samples in which pollution removal was more effective.
Go to article

Authors and Affiliations

Ewa Zabłocka-Godlewska
Wioletta Przystaś
Download PDF Download RIS Download Bibtex

Abstract

The aims of the current study are the physicochemical characterization, spatial assessment and monitoring of hydrocarbon contamination in quagmire of three sites (Agreb, Gassi and Zotti) in the Hassi Messaoud region (Algerian Sahara), as a result of the presence of an important oil industry rejecting industrial wastewater. Samples were obtained from three different depths for each site. Total Hydrocarbons (THC) were determined by a gravimetric method, and the four (F1:C6-C10), (F2:C10-C16), (F3:C16-C34) and F4>C34) hydrocarbon fractions and BTEX (Benzene, Toluene, Ethyl-benzene and Xylene) were determined by using gas chromatography (FID). The results obtained show a high contamination with hydrocarbons in different sites and depths. The concentrations of THC, four hydrocarbon fraction and BTEX recorded on Agreb site in different depth were in this order: 51200–120000 mg/kg d.w.; <LOD – 59500 mg/kg d.w.; 2.4–90.8 mg/kg d.w. respectively; and for Gassi site, in this order: 59600–70300 mg/kg d.w.; < LOD – 43000 mg/kg d.w.; 8.5–112 mg/kg d.w. Finely they were in the following order: 18100–19200 mg/kg d.w.; <LOD – 9130 mg/kg d.w.; 2.75–65 mg/kg d.w. for Zotti site. Statistical analysis demonstrated an important site effect of THC and the three hydrocarbon fractions except for F4. However, there is no site and depth effect for BTEX. On the other hand the depth effect is significant just for THC, F1 and F2 of hydrocarbons. This variation can be attributed to the difference of physicochemical parameters between studied sites.
Go to article

Bibliography

  1. Adebiyi, F. M. & Afedia, M. O. (2011). The ecological impact of used petrochemical oils on soil properties with special reference to physicochemical and total petroleum hydrocarbon contents of soils around automobile repair workshops. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 33 No. 16, pp. 1556-1565. DOI:10.1080/15567030903397883
  2. Alvarez, P. J. J. & Illman, W. A. (2005). Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models, 1st ed., Wiley-Interscience, New Jersy. DOI:10.1002/047173862x
  3. Arocena, J. M. & Rutherford, P. M. (2005). Properties of hydrocarbon- and salt contaminated flare pit soils in northeastern British Columbia (Canada). Chemosphere, Vol. 60, pp. 567-575. DOI:10.1016/J.CHEMOSPHERE.2004.12.077
  4. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and smusels of the western Mediterranean sea. Environmental Toxicology and Chemistry, Vol. 17, pp.765–776. DOI:10.1002/ETC.5620170501
  5. Belahmadi, M. S. O., Abdessemed, A., Gherib, A., Charchar, N., Houali, K. & Houhamdi, M. (2021). Spatiotemporal assessment and monitoring of hydrocarbons contamination of water and sediments in skikda bay (Algeria). International Journal of Environmental Analytical Chemistry, pp. 1-19. DOI:10.1080/03067319.2021.1879801
  6. CCME (2001). Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in soil. CCME Council of Ministers.
  7. Clark, J.D., Serdar, B., Lee, D.J., Arheart, K., Wilkinson, J.D. & Fleming, L.E. (2012). Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environmental Research, Vol. 117, pp. 132-137. DOI:10.1016/j.envres.2012.04.012
  8. Colin C. (2000). Localized pollution of soils and subsoils by hydrocarbons and chlorinated solvents. Report of the Academy of Sciences n° 44, Technique and Documentation, 1st ed., Lavoisier, Paris.
  9. Fusey, P. & Oudot, J. (1973). Note sur l’accélération de la biodégradation d’un pétrole brut par des bactéries. Material Organismen, Vol. 8, pp. 158-163.
  10. Fusey, P. & Oudot, J. (1976). Comparaison de deux méthodes d’évaluation de la biodégradation des hydrocarbures in vitro. Material Organismen. Vol. 4, pp. 241-251.
  11. Fusey, P., Lampin, M.F. & Oudot, J. (1981). Recherche sur l’élimination des hydrocarbures par voie biologique. Material Organismen. Vol. 2, pp. 109.
  12. Greene, E.A., Kay, J.G., Jaber, K., Stehmeier, L.G. & Voordouw, G. (2000). Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Applied and Environmental Microbiology, Vol. 66, pp. 5282-5289.
  13. Jiang, Z., Huang, Y., Xu, X., Liao, Y., Shou, L., Liu, J., Quan-zhen, C. & Zeng J. (2010). Advance in the toxic effects of petroleum water accommodated fraction on marine plankton. Acta Ecologica Sinica, Vol. 30, pp. 8-15. DOI:10.1128/AEM.66.12.5282-5289.2000. DOI:10.1016/J.CHNAES.2009.12.002
  14. Jung, K.H., Hsu, S.-I., Yan, B., Moors, K., Chillrud, S.N., Ross, J. & Wang, S. (2012). Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environment International, Vol. 45, pp. 44-50. DOI:10.1016/j.envint.2012.03.012
  15. Khairy, M.A., Weinstein, M.P. & Lohmann, R. (2014). Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a Tidal Rive. Environmental Science & Technology, Vol. 48, pp. 12533–12542. DOI:10.1021/es502886n
  16. Langlois, P.H., Hoyt, A.T., Lupo, P.J., Lawson, C.C., Waters, M.A., Desrosiers, T.A., Shaw, G.M., Romitti, P.A. & Lammer, E.J. (2013). Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of oral cleft-affected pregnancies. The Cleft Palate-Craniofacial Journal, Vol. 50, pp. 337-346. DOI:10.1597/12-104
  17. Mauricio-Gutiérrez A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C. & Sánchez-Alonso, M.P. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, Vol. 46, pp. 59-69. DOI:10.24425/aep.2020.135765
  18. Moscoso, F., Deive, F.J., Longo, M.A., & Sanromán, M.A. (2012). Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresource Technology, Vol. 104, pp. 81-89. DOI:10.1016/j.biortech.2011.10.053
  19. Mozo, I., Stricot, M., Lesage, N. & Spérandio, M. (2011). Fate of hazardous aromatic substances in membrane bioreactors. Water research, Vol. 45, pp. 4551-4561. DOI:10.1016/j.watres.2011.06.005
  20. Neff, J., M., Ostazeski, S., Gardiner W. & Stejskal, I. (2000). Effects of weathering on the toxicity of three off shore Australian crude oils and a diesel fuel to marine animals. Environmental Toxicology and Chemistry, Vol. 19, No. 7, pp. 1809-1821. DOI:10.1002/ETC.5620190715
  21. Official Journal of the Algerian Republic (OJAR). Number 36, April 2006. Limit values of industrial liquid effluent discharge parameters.
  22. Ozcan, S. & Aydin, M. E. (2009). Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in urban air of Konya, Turkey. Atmospheric Research, Vol. 93, pp. 715–722. DOI:10.1016/J.ATMOSRES.2009.02.012
  23. Paliulis, D. (2021). Experimental investigations of dynamic sorption of diesel from contaminated water. Archives of Environmental Protection, Vol. 47, pp. 30-39. DOI:10.24425/aep.2021.139500
  24. Park, J.H., Zhao, X. & Voice, T.C. (2001). Biodegradation of non-desorbable naphthalene in soils. Environmental Science and Technology, Vol. 35, pp. 2734-2740. DOI:10.1021/ES0019326
  25. Ping, L., Zhang, C., Zhu, Y., Wu, M., Hu, X., Li, Z. & Zhao, H. (2011). Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2. Biotechnology and Bioprocess Engineering, Vol. 16, No. 5, pp. 1000–1008. DOI:10.1007/S12257-010-0435-Y
  26. Rosa, M.J., Jung, K.H., Perzanowski, M.S., Kelvin, E.A., Darling, K.W., Camann, D.E. & Chillrud, S.N. (2011). Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respiratory Medicine, Vol. 105, pp. 869-876. DOI:10.1016/j.rmed.2010.11.022
  27. Rota, M., Bosetti, C., Boccia, S., Boffetta, P. & La Vecchia, C. (2014). Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: An updated systematic review and a meta-analysis to 2014. Archives of Toxicology, Vol. 88, pp. 1479-1490. DOI: 10.1007/s00204-014-1296-5
  28. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Archives of Environmental Protection, Vol. 43, pp. 73-79. DOI:10.1515/aep-2017-0004
  29. Xu, X.H., Cook, R.L., Ilacqua, V.A., Kan, H.D., Talbott, E.O. & Kearney, G. (2010). Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Science of the Total Environment, Vol. 408, pp. 4943-4948. DOI:10.1016/j.scitotenv.2010.07.034
  30. Zappelini, C., Alvarez-Lopez, V., Capelli N., Guyeux, C. & Chalot, M. (2018). Streptomyces Dominate the Soil Under Betula Trees That Have Naturally Colonized a Red Gypsum Landfill. Frontiers in Microbiology, Vol. 9, pp. 1772. DOI:10.3389/fmicb.2018.01772
Go to article

Authors and Affiliations

Samia Kout
1
Abdessemed Ala
2
ORCID: ORCID
Mohamed Seddik Oussama Belahmadi
2
Amina Hassaine
1
Ouahiba Bordjiba
1
Ali Tahar
1

  1. Université Badji Mokhtar-Annaba Faculté des Sciences Département de Biologie, Algeria
  2. Biotechnology Research Centre (C.R.Bt), Algeria
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of CRL research on glacial till contaminated with JET A1 aviation fuel and mineral oil 15W40. The conducted research has shown that the compressibility of fine grained soils contaminated with hydrocarbons during a constant rate of loading tests depends on the physical properties of the soil, properties of oil contaminants, their content in the soil pores as well as the adopted loading velocity. The implemented laboratory test program shows that the contamination of glacial till with hydrocarbons increases their compressibility. Moreover, this research shows that the CRL test method may be recommended in the compressibility research of fine grained soils contaminated with hydrocarbons.
Go to article

Authors and Affiliations

Piotr Stajszczak
1

  1. Geoteko Geotechnical Consultants Ltd., ul. Wałbrzyska 14/16, 02-739 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds characterized by carcinogenic, toxic and mutagenic effect on life organisms. The mining and burning of coal are widely practiced in the tundra zone which results in the release of PAHs. The studies of PAHs content in organogenic horizon of tundra soil and southern tundra plants were performed at the control sites and at areas affected by coal industry. The soil and plants were analyzed for PAHs by HPLC. It was established that tundra soils, lichens and mosses are contaminated with polyarenes to a larger extent in the areas affected by the coal mining. The peak of PAHs concentration in the area affected by the Vorkutinskaya coal mine was observed within the distance of 0.5 km, and within 1.0 km in the area affected by the thermal power station. We propose to use diagnostic correlations of fluoranthene/ chrysene and fluoranthene/benz[b]fluoranthene in soils and mosses Pleurozium schreberi (Brid.) Mitt. to characterize the origin of polyarenes in tundra ecosystems. The similar polyarenes distribution is found in the soils and plants under the influence of coal industry. With polyarenes supply from industrial sources decreasing, their bioaccumulation level in the plants is reduced. We recommend Pleurozium schreberi to be used as a pollution indicator of tundra phytocenoses with PAHs and leaves of Betula nana L. for assessment of short-time changes of polyarene contents. The general contents rather than the surface accumulations are more suitable for the monitoring studies.

Go to article

Authors and Affiliations

Evgenia Yakovleva
Dmitriy Gabov
Download PDF Download RIS Download Bibtex

Abstract

In the region of Bransfield Strait and southern part of Drake Passage the highest amounts of chlorinated hydrocarbons (CHs — compounds of the DDT group, HCH isomers and PCBs) were found in the samples taken at the sampling station where the CHs bottom deposits were released to the upper layers due to the special hydrological situation at this station. Increased amounts of CHs were observed also in phytoplankton sampled close to the melting ice of glacier origin which was considered as a source of pollution. However, phytoplankton sampled from the waters covered with pack-ice exhibited the lowest rate of CHs accumulation. Slightly elevated CHs accumulation was found in sea ice diatoms. All the samples exhibited elevated amount of polichlorinated biphenyls, markedly higher than that of chloroorganic insecticides.

Go to article

Authors and Affiliations

Aleksy B. Łukowski
Ryszard Ligowski
Download PDF Download RIS Download Bibtex

Abstract

Results of research on the hazard posed by polycyclic aromatic hydrocarbons contained in the dusts emitted from motor vehicle braking systems have been presented. The polycyclic aromatic hydrocarbons (PAHs) constitute a group of chemical compounds that pose a serious danger to the human health, chiefly because of their carcinogenic properties. Investigations into the issue of environmental pollution with polycyclic aromatic hydrocarbons generated by motor vehicle traffic were carried out in connection with the work being done at PIMOT on systems to reduce dust emission from motor vehicle braking systems. The investigations included determination of PAH contents of the dust emitted from vehicle braking systems as well as the PAH concentrations in the indoor air in a room with the stand for testing dust emissions from braking systems and in the duct to carry away gases from that room. Moreover, the PAH contents of soil were measured in the context of location of the soil sampling points in relation to traffic routes. The PAH contents were measured in Warsaw and in Zabrze. The investigation results confirmed that PAHs considered as being most harmful to the human health due to their carcinogenic properties were actually present in the dusts emitted from braking systems. The PAH contents of soil were found to be very sensitive to the location of the soil sampling points in relation to traffic routes and this is a confirmation of the thesis that motor traffic is an important source of environmental pollution with polycyclic aromatic hydrocarbons.

Go to article

Authors and Affiliations

Andrzej Jakubowski
Zdzisław Chłopek
Katarzyna Suchocka
Magdalena Dudek
Download PDF Download RIS Download Bibtex

Abstract

Soil contamination with petroleum hydrocarbons is a serious problem. In the soil in the location of highways, fuel pumping station and airfields high pollutant concentrations are found. The contents of total hydrocarbons (THC) and 16 polycyclic aromatic hydrocarbons (PAHs) were analysed in the surface (0-20 cm) soil samples from airfields in Dęblin Marked differences in the pollution level of the above areas were noted. The PAH contents ranged from 113 to 5638 μg/kg and THC contents range from 40 to 430 mg/kg. The analysis was carried out by reverse phase HPLC (PAHs) and SOXTEC apparatus according to Polish norm PN-86/C-04573/01.
Go to article

Authors and Affiliations

Stanisław Baran
Patryk Oleszczuk
Download PDF Download RIS Download Bibtex

Abstract

Sewage and sewage sludge from municipal wastewater treatment plant were analyzed for 16 EPA-PAH. The measurements were conducted to investigate the effect of different treatment stages on PAH content in wastewater and sewage sludge. PAH loads in influent, mechanically and biologically treated sewage, as well as in raw, digested and dewatered sludge were calculated. Mechanical and biological treatment was found to remove 85% of PAH from the influent. Despite of this a daily PAH load introduced into environment was high, and reached 37% of the PAH load in the influent. In sewage it was equal to 46 g PAH-lid, with carcinogenic PAH content of 12%. In waste sludge (filter pressed sludge and sand from sand trap) PAH total load reached 68 gid with 17% of carcinogenic PAH.
Go to article

Authors and Affiliations

Maria Włodarczyk-Makuła
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to determine the influence of native and alien keratinolytic fungi inocula on the petroleum hydrocarbon removal rate in soil covered and not covered with hair. The hair was the major nutrient for keratinolytic fungi and other soil microorganisms. The fungal inocula accelerated the petroleum hydrocarbon biodegradation process during the first month of the experiment. During the second month, TPH removal rates were similar for soil inoculated and not inoculated with fungi. The highest petroleum hydrocarbon removal rate was observed in soil inoculated with native fungal strains. The TPI-I removal rates were about 64% in soil covered with hair and 77% in soil not covered with hair. The lowest removal rate was observed in soil not inoculated with fungi (60%). The hair applied as additional nitrogen, sulfur and carbon source did not impact, or slightly inhibited, the petroleum hydrocarbon biodegradation process. The fungal inocula caused dramatic changes in soil fungal qualitative composition.
Go to article

Authors and Affiliations

Wioletta Przystaś
Krzysztof Ulfig
Korneliusz Miksch
Aleksandra Witała
Jerzy Szdzuj
Download PDF Download RIS Download Bibtex

Abstract

The content of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Blachownia

reservoir (South Poland) was investigated. Spatial variability of PAH concentrations in the longitudinal profi le of the

tank was determined. PAHs in samples were determined by gas chromatography coupled with mass spectrometric

detection (GC-MS QP-2010 Plus Shimadzu) using an internal standard. Concentrations ranged from 0.103 μg/L to

2.667 μg/L (Σ16 PAHs) in water samples and from 2.329 mg/kg d.w. to 9.078 mg/kg d.w. (Σ16 PAHs) in sediment

samples. A pollution balance was calculated and it was estimated that the infl ow load was 17.70 kg PAHs during

the year and the outfl ow load was 9.30 kg PAHs per year. Accumulation of about 50% of the annual PAH loads

(8.90 kg) is a threat to the ecological condition of the ecosystem. It was calculated that the PAH loads in bottom

sediment were about 80 kg, which limits their economic use. Improvement of the ecological status of this type of

reservoir can be achieved by removing the sediment. Analysis of the diagnostic ratios obtained for selected PAHs

showed that the potential sources of PAH emissions in small agricultural – forest catchments can be combustion

of a coal, wood, plant material (low emission, forest fi res, burning grass, etc.). Transportation is also signifi cant.

Go to article

Authors and Affiliations

Maciej Kostecki
Izabela Jureczko
Alina Pohl
Marianna Czaplicka
Bartosz Łozowski
Download PDF Download RIS Download Bibtex

Abstract

No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for

filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder

begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified ureafurfuryl

resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic) on a quartz matrix,

under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method

extended in the Faculty of Foundry Engineering (AGH University of Science and Technology). Article presents the results of the emitted

chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the

data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on

ignition.

Go to article

Authors and Affiliations

S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski

This page uses 'cookies'. Learn more