Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a description of the phenomena occurring on the surface of the forging dies. A detailed analysis was made of 24 pre-forging dies due to the most intensive wear in this operation. To compare the results, new tools were also analysed. The research described in the study showed that the most dangerous factor for the hot forging process analysed is thermal-mechanical fatigue, which causes small cracks, which in turn quickly leads to the formation of a crack network on the entire contact surface of the tool with forged material. The second phenomenon is the tempering of the surface of the material for a long-term temperature effect. The presence of hard iron oxides in the form of scale from forging material is the accompanying phenomenon that intensifies the processes of tool wear. The paper presents the results of the analysis of the presence of residual magnetic field for forging tools and the results of laboratory tests of wear processes of tool steels for hot work in the presence of a magnetic field and in the presence of scale.

Go to article

Authors and Affiliations

M. Zwierzchowski
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the multi-operation hot die forging process, performed on a press, of producing a lever forging used in the motorcycles of a renowned producer by means of numerical simulations. The investigations were carried out in order to improve (perfect) the currently applied production technology, mainly due to the presence of forging defects during the industrial production process. The defects result mainly from the complicated shape of the forging (bent main axis, deep and thin protrusions, high surface diversity in the cross section along the length of the detail), which, during the filling of the die by the deformed material, causes the presence of laps, wraps and underfills on the forging. Through the determination of the key parameters/quantities during the forging process, which are difficult to establish directly during the industrial process or experimentally, a detailed and complex analysis was performed with the use of FEM as well as through microstructure examinations. The results of the performed numerical modelling made it possible to determine: the manner of the material flow and the correctness of the impression filling, as well as the distributions of temperature fields and plastic deformations in the forging, and also to detect the forging defects often observed in the industrial process. On this basis, changes into the process were introduced, making it possible to improve the currently realized technology and obtain forgings of the proper quality as well as shape and dimensions.

Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Rychlik
Z. Gronostajski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a prototype semi-industrial cooling line developed by the authors, which makes it possible to design a thermal treatment of forgings with the use of the forging heat, together with exemplary test results for forgings forked type. The proposed method of heat treatment dedicated to these forgings was described and compared to traditionally used heat treatment method in chamber furnaces. Next, the original research stand was presented, which performs mechanical fatigue test on final products – forked-type forgings. Forgings after heat treatment and cooling on the prototype line were tested on this stand in condition of cyclically variable mechanical loads in order to resistance to mechanical fatigue was analyzed and the influence of performed exemplary heat treatment on mechanical properties. The presented preliminary investigations performed on the designed combined research standing, consisting of: the prototype controlled cooling line, as well as mechanical fatigue stand point to the possibility of implementing thermal treatment with the use of the heat generated during the forging process and determining its impact on the mechanical properties of forgings.

Go to article

Authors and Affiliations

Z. Gronostajski
ORCID: ORCID
M. Hawryluk
P. Jabłoński
M. Zwierzchowski
A. Barelkowski
P. Widomski
ORCID: ORCID

This page uses 'cookies'. Learn more