Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the microstructure and high temperature oxidation properties of Fe-25Cr-20Ni-1.5Nb, HK30 alloy manufactured by metal injection molding (MIM) process. The powder used in MIM had a bi-modal size distribution of 0.11 and 9.19 μm and had a spherical shape. The initial powder consisted of γ-Fe and Cr23C6 phases. Microstructural observation of the manufactured (MIMed) HK30 alloy confirmed Cr23C6 along the grain boundary of the γ-Fe matrix, and NbC was distributed evenly on the grain boundary and in the grain. After a 24-hour high temperature oxidation test at air atmospheres of 1000, 1100 and 1200°C, the oxidation weight measured 0.72, 1.11 and 2.29 mg/cm,2 respectively. Cross-sectional observation of the oxidation specimen identified a dense Cr2O3 oxide layer at 1000°C condition, and the thickness of the oxide layer increased as the oxidation temperature increased. At 1100°C and 1200°C oxidation temperatures, Fe-rich oxide was also formed on the dense Cr2O3 oxide layer. Based on the above findings, this study identified the high-temperature oxidation mechanism of HK30 alloy manufactured by MIM.

Go to article

Authors and Affiliations

Dong-Yeol Wi
Young-Kyun Kim
Tae-Sik Yoon
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

Initial investigations on oxidation behaviour and phase transformations of equimolar AlCoCrCuNi high entropy alloy with and without 1 at.% silicon addition during 24-hr exposure to air atmosphere at 1273 K was carried out in this work. After determining the oxidation kinetics of the samples by means of thermogravimetric analysis, the morphology, chemical and phase compositions of the oxidized alloys were determined by means of scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Additional cross-section studies were performed using transmission electron microscopy combined with energy dispersive X-ray spectroscopy and selected area electron diffraction. From all these investigations, it can be concluded that minor silicon addition improves the oxidation kinetics and hinders the formation of an additional FCC structure near the surface of the material.
Go to article

Authors and Affiliations

R. Gawel
1
Ł. Rogal
2
ORCID: ORCID
K. Przybylski
1
Kenji Matsuda
3

  1. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Physical Chemistry and Modelling, Al. Mickiewicza 30, 30 -059 Kraków, Poland
  2. Polish Academy of Sciences, Institute of Metallurgy and Materials, 25 Reymonta Str., 30-059 Kraków, Poland
  3. University of Toyama, Faculty of Sustainable Design, Department of Materials Design and Engineering, 3190 Gofuku, Toyama 930-8555, Japan
Download PDF Download RIS Download Bibtex

Abstract

In this paper, thermal oxidation resistance of silicide-coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. Pure niobium specimens were coated using the pack cementation CVD method. Three different silicide thickness coatings were deposited. Thermal oxidation resistance of the coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. All samples that passed the test showed their ability to stabilize the temperature over a time of 30 s during the thermal test. The rise time of substrate temperature takes about 10 s, following which it keeps constant values. In order to assess the quality of the Nb-Si coatings before and after the thermal test, light microscopy, scanning electron microscopy (SEM) along with chemical analysis (EDS), X-ray diffraction XRD and Vickers hardness test investigation were performed. Results confirmed the presence of substrate Nb compounds as well as Si addition. The oxygen compounds are a result of high temperature intense oxidizing environment that causes the generation of SiO phase in the form of quartz and cristobalite during thermal testing. Except for one specimen, all substrate surfaces pass the high temperature oxidation test with no damages.
Go to article

Bibliography

  1.  S. Knittel, S. Mathieu, L. Portebois, S. Drawin, and M. Vilasi, “Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation”, Surf. Coat. Technol., 235, pp. 401‒406, 2013, doi: 10.1016/j.surfcoat.2013.07.053.
  2.  J. Cheng, S. Yi, and J. Park, “Oxidation behavior of Nb–Si–B alloys with the NbSi2 coating layer formed by a pack cementation technique”, Int. J. Refract. Met. Hard Mat., vol. 41, pp. 103‒109, 2013, doi: 10.1016/j.ijrmhm.2013.02.010.
  3.  S. Cheng, S. Yi, and J. Park, “Oxidation behaviors of Nb–Si–B ternary alloys at 1100°C under ambient atmosphere”, Intermetallics, vol. 23, pp. 12‒19, 2012, doi: 10.1016/j.intermet.2011.11.007.
  4.  B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.C. Zhao, “A review of very-high-temperature Nb-silicide-based composites”, Metall. Mater. Trans. A, vol. 34, pp. 2043–2052, 2003, doi: 10.1007/s11661-003-0269-8.
  5.  R. Swadźba, “High temperature oxidation behavior of C103 alloy with boronized andsiliconized coatings during 1000h at 1100°C in air”, Surf. Coat. Technol., vol. 370, pp. 331‒339, 2019, doi: 10.1016/j.surfcoat.2019.04.019.
  6.  J. Sun, Q.G. Fu, L.P. Guo, and L. Wang, “Silicide coating fabricated by HAPC/SAPS combination to protect niobium alloy from oxidation”, ACS Appl. Mater. Interfaces, vol. 8, pp. 15838–15847, 2016, doi: 10.1021/acsami.6b04599.
  7.  J. Sun, T. Li, G.-P. Zhang, and Q.-G. Fu, “Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range”, Journal of Alloys and Compounds, vol. 790, pp. 1014‒1022, 2019, doi: 10.1016/j.jallcom.2019.03.229.
  8.  H.P. Martinz, B. Nigg, J. Matej, M. Sulik, H. Larcher, and A. Hoffmann, “Properties of the SIBOR® oxidation protective coating on refractory metal alloys”, Int. J. Refract. Met. Hard Mat., vol. 24, pp. 283‒291, 2006, doi: 10.1016/j.ijrmhm.2005.10.013.
  9.  K. Tatemoto, Y. Ono, and R.O. Suzuki, “Silicide coating on refractory metals in molten salt”, J. Phys. Chem. Solids, vol. 66, pp. 526‒529, 2005, doi: 10.1016/j.jpcs.2004.06.043.
  10.  B.V. Cockeram and R.A. Rapp, “Oxidation-resistant boron- and germanium-doped silicide coatings for refractory metals at high temperature”, Mater. Sci. Eng. A, vol. 192–193, part 2, pp. 980‒986, 1995, doi: 10.1016/0921-5093(95)03342-4.
  11.  L. Zheng, E. Liu, Z. Zheng, L. Ning, J. Tong, and Z. Tan, “Preparation of alumina/aluminide coatings on molybdenum metal substrates, and protection performance evaluation utilizing a DZ40M superalloy casting test”, Surf. Coat. Technol., vol. 395, p. 125931, 2020, doi: 10.1016/j.surfcoat.2020.125931.
  12.  M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, and R. Filip, “Microstructure and oxidation resistance of an aluminide coating on the nickel based superalloymar m247 deposited by the cvd aluminizing process”, Arch. Metall. Mater., vol. 58, no. 3 pp. 697–701, 2013, doi: 10.2478/amm-2013-0057.
  13.  Y. Garip, “Production and microstructural characterization of nb-si based in-situ composite”, Bull. Pol. Acad. Sci. Arch. Metall. Mater., vol. 65, no. 2 pp. 917‒921, 2020, doi: 10.24425/amm.2020.132839.
  14.  M. Vilasi, G. Venturini, J. Steinmetz, and B. Malaman, “Crystal structure of triniobium triiron chromium hexasilicide Nb3Fe3 Cr1Si6: an intergrowth of Zr4Co4Ge7 and Nb2Cr4Si5 blocks”, J. Alloy. Compd., vol. 194, pp. 127‒132, 1993, doi: 10.1016/0925-8388(93)90657- 9.
  15.  M. Vilasi, M. Francois, R. Podor, and J. Steinmetz, “New silicides for new niobium protective coatings”, J. Alloy. Compd., vol. 264, pp. 244‒251, 1998, doi: 10.1016/S0925-8388(97)00234-X
  16.  M. Vilasi, M. Francois, H. Brequel, R. Podor, G. Venturini, and J. Steinmetz, “Phase equilibria in the Nb–Fe–Cr–Si System”, J. Alloy. Compd., vol. 269, pp. 187‒192, 1998, doi: 10.1016/S0925-8388(98)00142-X.
  17.  S. Knittel, S. Mathieu, and M. Vilasi, “Nb4Fe4Si7 coatings to protect niobium and niobium silicide composites against high temperature oxidation”, Surf. Coat. Technol., vol. 235, pp. 144–154, 2013, doi: 10.1016/j.surfcoat.2013.07.027.
  18.  S. Majumdar, T.P. Senguptab, G.B. Kaleb, and I.G. Sharma, “Development of multilayer oxidation resistant coatings on niobium and tantalum”, Surf. Coat. Technol., vol. 200, pp. 3713–3718, 2006, doi: 10.1016/j.surfcoat.2005.01.034.
  19.  S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, and S. Banerjee, “Deposition of aluminide and silicide based protective coatings on niobium”, App. Surf. Sci., vol. 257, pp. 635–640, 2010, doi: 10.1016/j.apsusc.2010.07.055.
  20.  L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, and S. Mathieu, “Effect of boron addition on the oxidation resistance of silicide protective coatings: A focus on boron location in as-coated and oxidised coated niobium alloys”, Surf. Coat. Technol., vol. 253, pp. 292–299, 2014, doi: 10.1016/j.surfcoat.2014.05.058.
  21.  L. Xiao, X. Zhou, Y. Wang, R. Pu, G. Zhao, Z. Shen, and Y. Huang, S.Liu, Z.Cai, X.Zhao,, “Formation and oxidation behavior of Ce- modified MoSi2–NbSi2 coating on niobium alloy”, Corrosion Sci., vol. 173, p. 108751, 2020, doi: 10.1016/j.corsci.2020.108751.
  22.  J. Sun, Q. Fu, and L.Guo, “Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy”, Intermetallics, vol. 72, pp. 9‒16, 2016, doi: 10.1016/j.intermet.2016.01.006.
  23.  M. Pons, M. Caillet, and A. Galerie, “High temperature oxidation of niobium superficially coated by laser treatment”, Mater. Chem. Phys., vol. 15, pp. 423‒432, 1987, doi: 10.1016/0254-0584(87)90062-9.
  24.  B.A. Pinto, A. Sofia, and C.M. D’Oliveira, “Nb silicide coatings processed by double pack cementation: Formation mechanisms and stability”, Surf. Coat. Technol. 409, 2021, doi: 10.1016/j.surfcoat.2021.126913.
  25.  R. Swadźba et al., “Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950°C”, Intermetallics, vol. 87, pp. 81–89, 2017, doi: 10.1016/j.intermet.2017.04.015.
  26.  R. Swadźba, L. Swadźba, B. Mendala, P.-P. Bauer, N. Laska, and U. Schulz, “Microstructure and cyclic oxidation resistance of Si-aluminide coatings on γ-TiAl at 850°C”, Intermetallics, vol. 87, pp. 81‒89, 2017, doi: 10.1016/j.surfcoat.2020.126361.
  27.  J.A. Thornton, “High rate thick film growth”, Ann. Rev. Mater. Sci., vol. 7, pp. 239‒246, 1977, doi: 10.1146/annurev.ms.07.080177.001323.
Go to article

Authors and Affiliations

Radosław Szklarek
1 2 3
Tomasz Tański
1
ORCID: ORCID
Bogusław Mendala
1
Marcin Staszuk
1
ORCID: ORCID
Łukasz Krzemiński
1
Paweł Nuckowski
1
Kamil Sobczak
3

  1. Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  2. Spinex Spinkiewicz Company, Klimontowska 19, 04-672 Warsaw, Poland
  3. Łukasiewicz Research Network – Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The austenitic stainless steels are a group of alloys normally used under high mechanical and thermal requests, in which high temperature oxidation is normally present due to oxygen presence. This study examines the oxide layer evolution for Fe24Cr12NiXNb modified austenitic stainless steel A297 HH with 0,09%Nb and 0,77%Nb content at 900°C under atmospheric air and isothermal oxidation. The modifiers elements such as Mo, Co and Ti, added to provide high mechanical strength, varied due to the casting procedure, however main elements such as Cr, Ni, Mn and Si were kept at balanced levels to avoid microstructure changing. The oxide layer analysis was performed by confocal laser scanning microscopy (CLS) and scanning electron microscopy (SEM). The elemental analysis of the different phases was measured with energy dispersive X-ray spectroscopy (EDX). The Nb-alloyed steel generated a thicker Cr oxide layer. Generally elemental Nb did not provide any noticeable difference in oxide scale growth, for the specific range of Nb amount and temperature studied. High temperature oxidation up to 120h was characterized by protective Cr oxidation, after this period a non-protective Fe-based oxidation took place. Cr, Fe and Ni oxides were observed in the multilayer oxide scale.
Go to article

Bibliography

[1] Abbasi, M., Park, I., Ro, Y., Ji, Y., Ayer, R. & Shim, J.H. (2019). G-phase formation in twenty-years aged heat-resistant cast austenitic steel reformer tube. Materials Characterization. 148, 297-306. DOI: 10.1016/j.matchar. 2019.01.003.
[2] Madern, N., Monnier, J., Baddour-Hadjean, R., Steckmeyer, A. & Joubert, J.M. (2018). Characterization of refractory steel oxidation at high temperature. Corrosion Science. 132, 223-233. DOI: 10.1016/j.corsci.2017.12.029.
[3] Kondrat’ev, S.Y., Kraposhin, V.S., Anastasiadi, G.P. & Talis, A.L. (2015). Experimental observation and crystallographic description of M7C3 carbide transformation in Fe-Cr-Ni-C HP type alloy. Acta Materialia. 100, 275-281. DOI: 10.1016/j.actamat.2015.08.056.
[4] Dewar, M.P. & Gerlich, A.P. (2013). Correlation between experimental and calculated phase fractions in aged 20Cr32Ni1Nb austenitic stainless steels containing nitrogen . Metallurgical and Materials Transactions A. 44, 627-639. DOI: 10.1007/s11661-012-1457-1.
[5] Pascal, C., Braccini, M., Parry, V., Fedorova, E., Mantel, M., Oquab, D. & Monceau, D. (2017). Relation between microstructure induced by oxidation and room-temperature mechanical properties of the thermally grown oxide scales on austenitic stainless steels. Materials Characterization. 127, 161-170. DOI: 10.1016/j.matchar.2017.03.003.
[6] Chen, H., Wang, H., Sun, Q., Long, C., Wei, T., Kim, S.H., Chen, J., Kim, C., & Jang, C. (2018). Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor. Corrosion Science. 145, 90-99. DOI: 10.1016/j.corsci. 2018.09.016.
[7] Zhang, X., Li, D., Li, Y. & Lu, S. (2019). Effect of aging treatment on the microstructures and mechanical properties evolution of 25Cr-20Ni austenitic stainless steel weldments with different Nb contents. Journal of Materials Science & Technology. 35, 520-529. DOI: 10.1016/j.jmst.2018.10.017.
[8] Birks, N., Meier, G.H. & Pettit, F.S. (2006). Introduction to the high temperature oxidation of metals, Second edition. Cambridge University Press. DOI: 10.1017/ CBO9781139163903.
[9] Li, D.S., Dai, Q.X., Cheng, X.N., Wang, R.R. & Huang, Y. (2012). High-temperature oxidation resistance of austenitic stainless steel Cr18Ni11Cu3Al3MnNb. Journal of Iron Steel Research International. 19, 74-78. DOI: 10.1016/S1006-706X(12)60103-4.
[10] Kaya, A.A. (2002). Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations. Materials Characterization. 49, 23-34. DOI: 10.1016/S1044-5803(02)00284-X.
[11] Li, H., Zhang, B., Jiang, Z., Zhang, S., Feng, H., Han, P., Dong, N., Zhang, W., Li, G., Fan, G. & Lin, Q. (2016). A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air. Journal of Alloys and Compounds. 686, 326-338. DOI: 10.1016/j.jallcom.2016.06.023.
[12] M. Salehi Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Feizabadi, A. HabibollahZadeh, D. Salehi Doolabi, M. AsadiZarch. (2017). Comparison of Isothermal with cyclic oxidation behavior of “Cr-Aluminide” coating on inconel 738LC at 900 °C. Oxidation of Metals. 87, 57-74. DOI: 10.1007/s11085-016-9657-5.
[13] De Almeida, L.H., Ribeiro, A.F. & Le May, I. (2002). Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes. Materials Characterization. 49, 219-229. DOI: 10.1016/S1044-5803(03)00013-5.
[14] Nishimoto, K., Saida, K., Inui, M. & Takahashi, M. (2001). Changes in microstructure of HP-modified, heat-resisting cast alloys under long-term aging. Repair weld cracking of service-exposed, HP-modified, heat-resisting cast alloys (2nd report). Welding International. 15(7), 509-517. DOI: 10.1080/ 09507110109549397.
[15] Joubert, J.M., St-Fleur, W., Sarthou, J., Steckmeyer, A. & Fournier, B. (2014). Equilibrium characterization and thermodynamic calculations on highly alloyed refractory steels. Calphad Comput. Coupling Phase Diagrams Thermochem. 46, 55-61. DOI: 10.1016/j.calphad. 2014.02.002.
[16] Ramos, P.A., Coelho, R.S., Pinto, H.C., Soldera, F., Mücklich, F. & Brito, P. (2021). Microstructure and cyclic oxidation behavior of modified Nb-alloyed A297 HH refractory austenitic stainless steel. Materials Chemistry and Physics. 263, 124361. DOI: 10.1016/j.matchemphys. 2021.124361.
[17] Ramos, P.A., Coelho, R.S., Soldera, F., Pinto, H.C., Mücklich, F. & Brito,P. (2020). Residual stress analysis in thermally grown oxide scales developed on Nb-alloyed refractory austenitic stainless steels. Corrosion Science. 178, 109066. DOI: 10.1016/j.corsci.2020.109066.
[18] McCafferty E. (2010). Introduction to corrosion science. Springer Science & Business Media. DOI: 10.1007/978-1-4419-0455-3.

Go to article

Authors and Affiliations

P.A. Ramos
1 2
R.S. Coelho
3
H.C. Pinto
4
F. Soldera
5
F. Mücklich
5
P.P. Brito
1

  1. Pontifical Catholic University of Minas Gerais, Brazil
  2. Federal Institute of Science and Technology of Minas Gerais, Brazil
  3. SENAI CIMATEC, Institute of Innovation for Forming and Joining of Materials, Av. Orlando Gomes, 1845, Piatã, 41650-010, Salvador-BA, Brazil
  4. Department of Materials Engineering - SMM, São Carlos School of Engineering – EESC, University of São Paulo – USP, São Carlos, SP, Brazil
  5. Chair of Functional Materials, Department of Materials Science, Saarland University, 66123, Saarbrücken, Saarland, Germany
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the efficiency of power generation system and reduce CO2 emissions power plants work at high temperature and pressure. Under such conditions modified steel 9Cr, which fulfils the requirements concerning creep resistance, is used. However, Cr2O3 formed on the steel does not protect the construction material in the atmosphere which contains CO2 and SO2. The aim of the experiment was to study the behaviour of P91 steel in CO2 atmosphere with the addition of 1% and 5 vol.% of SO2 at different temperatures (700, 800 and 900°C). It was concluded that the corrosion rate of P91 steel is increasing with a rise in temperature. Scales formed in CO2 atmosphere at 900°C contain a mixture of iron oxides in the outer layer and chromium-iron spinel in the inner layer. The FeS and Ni were found in the inner zone of scales formed in SO2 atmosphere.

Go to article

Authors and Affiliations

H. Kominko
A. Jaroń
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, the formation of oxide scales on different Co-Ni based superalloys of γ–γ′ type was analyzed. Co-20Ni-7Al-7W (at. %) alloy as well as its W-free modifications based on Co-Ni-Al-Mo-Nb and Co-Ni-Al-Ta systems was analyzed under conditions of high temperature oxidation at 800 and 900°C. Therefore, the alloys were isothermally oxidized at selected temperatures for 100 h in laboratory furnace. Afterwards, the oxidation products were evaluated by means of X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The performed tests showed that W-free alloys exhibit worse oxidation resistance compared to those of Co-Ni-Al-W alloys. After oxidation at 900°C, all alloys were prone of oxide spallation. The scales characterized by oxide peeling were mostly composed of complex Co-based oxides, including CoWO4, CoTa2O6, Co2Mo3O8, CoNb2O6.

Go to article

Authors and Affiliations

D. Migas
ORCID: ORCID
M. Kierat
ORCID: ORCID
G. Moskal
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

CM247LC alloy was manufactured by using selective laser melting (SLM) process, one of the laser powder bed fusion ­(L-PBF) methods. The hot isostatic pressing (HIP) process was additionally conducted on the SLM-built CM247LC to control its microstructures and defects. The high temperature oxidation property was investigated, and it was compared with conventional DS247LC sample (reference) prepared via the directional solidification process. The L-PBF HIP sample showed blocky-type MC carbides generated along the grain boundary with average size of about 200 nm. A semi-spherical primary γ' phase of size 0.4-1.0 μm was also observed inside the grains. Moreover, the DS247LC sample displayed a coarse eutectic γ' phase and many script-type MC carbides. Furthermore, cuboidal-type γ' with an average size of about 0.5 μm was detected. High-temperature oxidation tests were conducted at 1000°C and 1100°C for 24 hours. The results at 1100°C oxidation temperature showed that the measured oxidation weight gains for HIP and DS247LC were 1.96 mg/cm2 and 2.26 mg/cm2, respectively, indicating the superior high-temperature oxidation resistance of the L-PBF HIP sample. Based on the above results, a high-temperature oxidation mechanism of the CM247LC alloys manufactured by the SLM process and the directional solidification process has been proposed.
Go to article

Authors and Affiliations

Jung-Uk Lee
1
Young-Kyun Kim
2
ORCID: ORCID
Seong-Moon Seo
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Korea Institute of Materials Science, Changwon 51508, Republic of Korea

This page uses 'cookies'. Learn more