Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Different buried permanent magnet arrangements in rotors are compared based on electrical machines found in literature regarding high-speed capability. An analytical approach is presented to analytically calculate mechanical stresses in the bilateral and central bridge of V arrangements in order to determine the achievable circumferential velocity of a rotor geometry. The mechanical model is coupled to an analytical model which can determine the flux density in the main air gap under consideration of flux leakage within the rotor. The multi-domain model enables the analytical design of high-speed rotors with buried permanent magnets in V-arrangement.
Go to article

Authors and Affiliations

Maximilian Lauerburg
1
ORCID: ORCID
Polkrit Toraktrakul
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen UniversitySchinkelstr. 4, D-52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

High-speed rotors on gas foil bearings (GFBs) are applications of increasing interest due to their potential to increase the power-toweight ratio in machines and also formulate oil-free design solutions. The gas lubrication principles render lower (compared to oil) power loss and increase the threshold speed of instability in rotating systems. However, self-excited oscillations may still occur at circumferential speeds similar to those in oil-lubricated journal bearings. These oscillations are usually triggered through Hopf bifurcation of a fixed-point equilibrium (balanced rotor) or secondary Hopf bifurcation of periodic limit cycles (unbalanced rotor). In this work, an active gas foil bearing (AGFB) is presented as a novel configuration including several piezoelectric actuators that shape the foil through feedback control. A finite element model for the thin foil mounted in some piezoelectric actuators (PZTs), is developed. Second, the gas-structure interaction is modelled through the Reynolds equation for compressible flow. A simple physical model of a rotating system consisting of a rigid rotor and two identical gas foil bearings is then defined, and the dynamic system is composed with its unique source of nonlinearity to be the impedance forces from the gas to the rotor and the foil. The third milestone includes a linear feedback control scheme to stabilize (pole placement) the dynamic system, linearized around a speed-dependent equilibrium (balanced rotor). Further to that, linear feedback control is applied in the dynamic system utilizing polynomial feedback functions in order to overcome the problem of instability.
Go to article

Authors and Affiliations

Anastasios Papadopoulos
1
Ioannis Gavalas
1
ORCID: ORCID
Athanasios Chasalevris
1
ORCID: ORCID

  1. National Technical University of Athens, Athens, Greece

This page uses 'cookies'. Learn more