Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 140
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical analysis of the thermal-flow characteristics for a laminar flow inside a rectangular microchannel. The flow of water through channels with thin obstacles mounted on opposite walls was analyzed. The studies were conducted with a low Reynolds number (from 20 to 200). Different heights of rectangular obstacles were analyzed to see if geometrical factors influence fluid flow and heat exchange in the microchannel. Despite of the fact that the use of thin obstacles in the microchannels leads to an increase in the pressure drop, the increase in the height of the obstacles favors a significant intensification of heat exchange with the maximum thermal gain factor of 1.9 for the obstacle height coefficient h/H=0.5, which could be acceptable for practical application.
Go to article

Bibliography

[1] Y.-T. Yang and S. Yang. Numerical study of turbulent flow in two-dimensional channel with surface mounted obstacle. International Journal of Heat and Mass Transfer, 37(18):2985–2991, 1994. doi: 10.1016/0017-9310(94)90352-2.
[2] K. Sivakumar, T. Sampath Kumar, S. Sivasankar, V. Ranjithkumar, and A. Ponshanmugakumar. Effect of rib arrangements on the flow pattern and heat transfer in internally ribbed rectangular divergent channels. Materials Today: Proceedings, 46(9):3379–3385, 2021. doi: 10.1016/j.matpr.2020.11.548.
[3] T.M. Liou, S.W. Chang, and S.P. Chan. Effect of rib orientation on thermal and fluid-flow features in a two-pass parallelogram channel with abrupt entrance. International Journal of Heat and Mass Transfer, 116:152–165, 2018. doi: 10.1016/j.ijheatmasstransfer.2017.08.094.
[4] W. Yang, S. Xue, Y. He, and W. Li. Experimental study on the heat transfer characteristics of high blockage ribs channel. Experimental Thermal and Fluid Science, 83:248–259, 2017. doi: 10.1016/j.expthermflusci.2017.01.016.
[5] F.B. Teixeira, M.V. Altnetter, G. Lorenzini, B.D. do A. Rodriguez, L.A.O. Rocha, L.A. Isoldi, and E.D. dos Santos. Geometrical evaluation of a channel with alternated mounted blocks under mixed convection laminar flows using constructal design. Journal of Engineering Thermophysics, 29(1): 92–113, 2020. doi: 10.1134/S1810232820010087.
[6] A. Korichi and L. Oufer. Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls. International Journal of Thermal Sciences, 44(7):644–655, 2005. doi: 10.1016/j.ijthermalsci.2004.12.003.
[7] L.C. Demartini, H.A. Vielmo, and S.V. Möller. Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2):153–159, 2004. doi: 0.1590/S1678-58782004000200006.
[8] Y.T. Yang and C.Z. Hwang. Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer, 46(5):771–780, 2003. doi: 0.1016/S0017-9310(02)00360-5.
[9] G. Wang, T. Chen, M. Tian, and G. Ding. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall. International Journal of Heat and Mass Transfer, 148:119142, 2020. doi: 10.1016/j.ijheatmasstransfer.2019.119142.
[10] S. Mahjoob and S. Kashkuli. Thermal transport analysis of injected flow through combined rib and metal foam in converging channels with application in electronics hotspot removal. International Journal of Heat and Mass Transfer, 177:121223, 2021. doi: 10.1016/j.ijheatmasstransfer.2021.121223.
[11] L. Chai, G.D. Xia, and H.S. Wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Applied Thermal Engineering, 92:32–41, 2016. doi: 10.1016/j.applthermaleng.2015.09.071.
[12] Y. Yin, R. Guo, C. Zhu, T. Fu, and Y. Ma. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Separation and Purification Technology, 236:116306, 2020. doi: 10.1016/j.seppur.2019.116306.
[13] A. Behnampour O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, M. Zarringhalam, and R. Mashayekhi. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-Dimensional Systems and Nanostructures, 91:15–31, 2017. doi: 10.1016/j.physe.2017.04.006.
[14] M.R. Gholami, O.A. Akbari, A. Marzban, D. Toghraie, G.A.S. Shabani, and M. Zarringhalam. The effect of rib shape on the behavior of laminar flow of {oil/MWCNT} nanofluid in a rectangular microchannel. Journal of Thermal Analysis and Calorimetry, 134(3):1611–1628, 2018. doi: 10.1007/s10973-017-6902-3.
[15] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, and M. Dahari. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-{Al2O3} nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290:135–153, 2016. doi: 10.1016/j.amc.2016.05.053.
[16] B. Mondal, S. Pati, and P.K. Patowari. Analysis of mixing performances in microchannel with obstacles of different aspect ratios. Journal of Process Mechanical Engineering, 233(5):1045–1051, 2019. doi: 10.1177/0954408919826748.
[17] L. Chai, G.D. Xia, and H.S. Wang. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls -- Part 2: Pressure drop. International Journal of Heat and Mass Transfer, 97:1081–1090, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.076.
[18] P. Pontes, I. Gonçalves, M. Andredaki, A. Georgoulas, A.L.N. Moreira, and A.S. Moita. Fluid flow and heat transfer in microchannel devices for cooling applications: Experimental and numerical approaches. Applied Thermal Engineering, 218:119358, 2023. doi: 10.1016/j.applthermaleng.2022.119358.
[19] B.K. Srihari, A. Kapoor, S. Krishnan, and S. Balasubramanian. Computational fluid dynamics studies on the flow of fluids through microchannel with intentional obstacles. AIP Conference Proceedings, 2516(1):170003. doi: 10.1063/5.0108550.
[20] T. Grzebyk and A. Górecka-Drzazga. Vacuum microdevices. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1):19–23, 2012. doi: 10.2478/v10175-012-0004-y.
[21] M. Kmiotek and A. Kucaba-Piętal. Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2):111–118, 2018. doi: 10.24425/119064.
[22] S. Baheri Islami, B. Dastvareh, and R. Gharraei. An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers. International Journal of Heat and Mass Transfer, 78:917–929, 2014. doi: 10.1016/j.ijheatmasstransfer.2014.07.022.
[23] S. Baheri Islami, B. Dastvareh, and R. Gharraei. Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer. International Communications in Heat and Mass Transfer, 43:146–154, 2013. doi: 10.1016/j.icheatmasstransfer.2013.01.002.
[24] C.K. Chung, C.Y. Wu, and T.R. Shih. Effect of baffle height and reynolds number on fluid mixing, Microsystem Technologies, 14(9-11):1317–1323, 2008, doi: 10.1007/s00542-007-0511-1.
[25] I. Adina R&D, Theory and Modling Guide, Vollume III: ADINA CFD&FSI, Report ARD. 2019.
[26] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998.
Go to article

Authors and Affiliations

Małgorzata Kmiotek
1
ORCID: ORCID
Robert Smusz
1
ORCID: ORCID

  1. Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamics deals with irreversible transformations of substances. Every thermodynamic property of a substance, as a function of two parameters describing its state, can be illustrated as a simply connected manifold. The term manifold stands for the Methods of Geometrical Representation of Thermodynamic Properties of Substances by Means of Surfaces. Generally, every transformation of a substance changes its energy (or enthalpy) by heat transfer and work done on it. All such changes (transformations) are considered to be irreversible and can be described using appropriate manifolds. Studies show that every transformation is associated with the degradation of energy. Such relations (between heat, work and other forms of energy or enthalpy) can be described by the Pfaff formulas and their integrations.

This article discusses the issue of irreversible energy degradation in heat transfer between two fluids. Irreversible heat transfer between separated fluids most often occurs through surface heat exchangers. All such processes are determined by convective heat transfer in thermal boundary layers and conduction through the wall. Consequently, entropy changes of fluids in heat and mass transfer can be observed in these layers. While the entropy rate of the heating fluid is negative and that of the heated medium is positive, the sum of entropy changes of all substances involved in the heat transfer process is always positive. These sums, known as entropy increase (entropy generation), can be interpreted as the measure of irreversible degradation of energy in heat transfer processes. The consequence of this degradation is that an arbitrary engine powered by the degraded (lower-temperature) heat flux will operate at a lower efficiency. The significance of this discussion relates especially to cases in power plants and cooling systems where surface heat exchangers are used. In the discussion proposed is the entropy increase as a criterion of irreversible energy degradation in heat transfer. Such introduced measure of effectiveness leads to an analysis of local overall heat transfer coefficient optimization on the cone-shaped manifold.

Go to article

Authors and Affiliations

Zbigniew Drożyński
Download PDF Download RIS Download Bibtex

Abstract

The inverse solution to the heat flux identification during the vertical plate cooling in air has been presented. The developed solution allowed to separate the energy absorbed by the chamber due to radiation from the convection heat losses to air. The uncertainty tests were carried out and the accuracy of the solution has been estimated at a level of 1%-5% depending on the boundary condition model. The inverse solution was obtained for the temperature measurements in the vertical plate. The stainless-steel plate was heated to 950°C and then cooled in the chamber in air only to about 30°C. The identified heat transfer coefficient was compared with the Churchill and Chu model. The solution has allowed to separate the radiation heat losses and to determine the Nusselt number values that stay in good agreement with the Churchill and Chu model for a nearly steady-state air flow for the plate temperature below 100°C.
Go to article

Authors and Affiliations

B. Hadała
1
ORCID: ORCID
Z. Malinowski
1
ORCID: ORCID
A. Gołdasz
2
ORCID: ORCID
A. Cebo-Rudnicka
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Lubrication and heat transfer control are two significant functions of mold fluxes. In order to coordinate the contradiction between lubrication and heat transfer, the effects of BaO and Li2O on basic characteristics of CaO-SiO2 based mold fluxes were studied by hemispherical melting temperature instrument, rotating cylinder method, X-ray diffractometer (XRD) in present study. The results show that the melting temperature and viscosity at 1300°C all represent a downward trend with BaO and Li2O enhancement at different basicity, and the break temperature decrease with BaO addition while decrease and then increase with Li2O addition, which illustrates that Li2O content should be no more than 0.8 wt% for the purpose of lubrication. Meanwhile, to ensure a sufficient thickness of the liquid slag film and avoid discontinuity of the liquid slag film, the BaO content is better to be 10 wt% with low melting temperature and viscosity. The main crystalline phase in the mold fluxes is cuspidine (3CaO·2SiO2·CaF2), and the crystallization ratio rises sharply when basicity increased to 1.65. For better deal with the contradiction of lubrication and heat transfer, the mold fluxes composition w(BaO) = 10 wt%, w(Li2O) = 0.8 wt%, R ≥1.65 is reasonable, which has a profound impact on high crystallization and lubricity mold fluxes.
Go to article

Authors and Affiliations

Haichuan Wang
1 2
ORCID: ORCID
Guang-ye Sheng
1
ORCID: ORCID
Haijun Wang
1 2
ORCID: ORCID
Hong-meng Liu
1
ORCID: ORCID
Ting Wu
1 2
ORCID: ORCID

  1. Anhui University of Technology, School of Metallurgical Engineering, Anhui, Ma’anshan, 243032, China
  2. Anhui University of Technology, Key Laborator y of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui,Ma’anshan, 243002, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results of investigations on the application of CuO-water nanofluids for intensification of convective heat transfer. Performance of nanofluids with 2.2 and 4.0 vol.% CuO NPs (nanoparticles) content were examined with regard to heat transfer coefficient and pressure losses in case of turbulent flow in a tube. Negligible impact of examined nanofluid on heat transfer improvement was found. Moreover, measured pressure losses significantly exceeded those determined for primary base liquid. The observations showed that application of nanofluid for heat transfer intensification with a relatively high solid load in the examined flow range is rather controversial.
Go to article

Authors and Affiliations

Grzegorz Dzido
Michał Drzazga
Marcin Lemanowicz
Andrzej T. Gierczycki
Download PDF Download RIS Download Bibtex

Abstract

Development of electronics, which aims to improve the functionality of electronic devices, aims at increasing the packing of transistors in a chip and boosting clock speed (the number of elementary operations per second). While pursuing this objective, one encounters the growing problem of thermal nature. Each switching of the logic state at the elementary level of an integrated circuit is associated with the generation of heat. Due to a large number of transistors and high clock speeds, higher heat flux is emitted by the microprocessor to a level where the component needs to be intensively cooled, or otherwise it will become overheated. This paper presents the cooling of microelectronic components using microjets.
Go to article

Authors and Affiliations

Artur Rusowicz
Maciej Leszczyński
Andrzej Grzebielec
Rafał Laskowski
Download PDF Download RIS Download Bibtex

Abstract

Flow boiling and flow condensation are often regarded as two opposite or symmetrical phenomena. Their description however with a single correlation has yet to be suggested. In the case of flow boiling in minichannels there is mostly encountered the annular flow structure, where the bubble generation is not present. Similar picture holds for the case of inside tube condensation, where annular flow structure predominates. In such case the heat transfer coefficient is primarily dependent on the convective mechanism. In the paper a method developed earlier by the first author is applied to calculations of heat transfer coefficient for inside tube condensation. The method has been verified using experimental data from literature on several fluids in different microchannels and compared to three well established correlations for calculations of heat transfer coefficient in flow condensation. It clearly stems from the results presented here that the flow condensation can be modeled in terms of appropriately devised pressure drop.
Go to article

Authors and Affiliations

Dariusz Mikielewicz
Rafał Andrzejczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.

Go to article

Authors and Affiliations

Jozef Cernecky
Jan Koniar
Zuzana Brodnianska
Download PDF Download RIS Download Bibtex

Abstract

In order to provide sufficient cooling capacity for working and heading faces of the coal mine, chilled water is often transported a long distance along pipelines in deep mine, which inevitably results in its temperature rising owing to heat transfer through pipe wall and the friction heat for flow resistance. Through theoretical models for temperature increasing of the chilled water were built. It is pointed out that the temperature rising of the chilled water should be considered as a result of the synergy effects of the heat transfer and the friction heat, but theoretical analysis shows that within engineering permitting error range, the temperature increasing can be regarded as the sum caused by heat transfer and fraction heat respectively, and the calculation is simplified. The calculation analysis of the above two methods was made by taking two type of pipe whose diameters are De273 × 7 mm and De377 × 10 mm, with 15 km length in coal mine as an example, which shows that the error between the two methods is not over 0.04°C within the allowable error range. Aims at the commonly used chilled water diameter pipe, it is proposed that if the specific frictional head loss is limited between 100 Pa/m and 400 Pa/m, the proportion of the frictional temperature rising is about 24%~81% of the total, and it will increase with high flow velocity and the thin of the pipe. As a result, the friction temperature rising must not be ignored and should be paid enough attention in calculation of the chilled water temperature rising along pipe.

Go to article

Authors and Affiliations

Qi Yudong
Cheng Weimin
Xin Song
Download PDF Download RIS Download Bibtex

Abstract

The authors present a numerical study of a start-up of a boiler with a thick-walled element subjected to thermomechanical loading. The significance of calculations of real heat transfer coefficients has been demonstrated. Fluid dynamics, mechanical transient thermal and static structural calculations have been conducted in both separate and coupled modes. Strain-stress analyses prove that the effect of the heat transfer coefficient changing in time and place in comparison with a constant one as recommended by standards is the key factor of fatigue calculations.

Go to article

Authors and Affiliations

Krzysztof Wacławiak
Jerzy Okrajni
Download PDF Download RIS Download Bibtex

Abstract

The present work comprises a numerical analysis using the Ansys program to solve the problem of combined free-forced convection around a circular cylinder located in a horizontal lid-driven trapezoidal enclosure. The enclosure is filled with water. The upper moving wall and lower fixed wall are cold at a constant temperature, whereas the inclined walls are adiabatically insulated. The uniformly heated cylinder is located at different positions in the cavity. The study covers three values of Richardson number (0.01, 1, and 10). The results show that the streamlines and isotherms in the enclosure, the Nusselt number and friction factor in the moving wall, hot wall and bottom wall are strongly dependent on the position of the inner hot cylinder. The results are validated with previous work, and the comparison gives good agreement.
Go to article

Authors and Affiliations

Asmaa Ali Hussein
1

  1. Middle Technical University, Institute of Technology/Baghdad, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Thermoelectric generators using the Seebeck effect to generate electricity are increasingly used in various areas of human activity, especially in cases where a cheap high-temperature heat source is available. Despite many advantages, TEG generators have one major disadvantage: very low efficiency of heat conversion into electrical power which strongly depends on the applied load resistance. There is a maximum of generated power between the short and the open circuit in which it is zero. That is why optimization of TEG modules is particularly important. In this paper a method of maximization of generated power in a single TEG module is presented for two cases. The first case concerns a problem with fixed heat flux flow into the hot side of the module whereas the second one concerns a problem with fixed heat transfer parameters in hot heat exchanger i.e. supply gas temperature and heat transfer coefficient. A number of optimization results performed for various values of these parameters are presented and discussed.
Go to article

Authors and Affiliations

Artur Poświata
1
Paweł Gierycz
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hydraulic and transport properties of periodic open cellular structures (POCS) based on cubic cells were investigated numerically. Different cell and strut dimensions, as well as strut shapes, were examined. Numerical results of heat transfer and flow resistance, as well as modeled morphological parameters were verified experimentally. The most beneficial properties were obtained for the POCS with convex triangular, circular and hexagonal struts.
Go to article

Authors and Affiliations

Marzena Iwaniszyn
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is shown that heat energy transfer from the source to the medium is accompanied by rheological transitions. Physical parameters of the medium change in the rheological transition zone due to heat energy flow transfer at a certain speed. It is shown that use of linear gradient laws during description of heat energy transfer processes leads to great differences between theoretical and experimental results, as well as the paradox of infinite spreading speed of disturbances of temperature fields. For mathematical description of heat energy transfer processes in mediums, it is proposed to use the method of irreversible rheological transitions and zero gradient, thus providing solutions of nonlinear differential equations in analytical form.
Go to article

Authors and Affiliations

Y. Stentsel
O. Porkuian
K. Litvinov
O. Shapovalov
Download PDF Download RIS Download Bibtex

Abstract

This work discusses the heat transfer aspects of the neonate’s brain cooling process carried out by the the device to treat hypoxic-ischemic encephalopathy. This kind of hypothermic therapy is undertaken in case of improper blood circulation during delivery which causes insufficient transport of oxygen to the brain and insufficient cooling of the brain by circulating blood. The experimental setup discussed in this manuscript consists of a special water flow meter and two temperature sensors allowing to measure inlet and outlet water temperatures. Collected results of the measurements allowed to determine time histories of the heat transfer rate transferred from brain to the cooling water for three patients. These results are then analysed and compared among themselves.

Go to article

Authors and Affiliations

Dominika Bandoła
Marek Rojczyk
Ziemowit Ostrowski
Joanna Łaszczyk
Wojciech Walas
Andrzej J. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Plate fin-tube heat exchangers fins are bonded with tubes by means of brazing or by mechanical expansion of tubes. Various errors made in the process of expansion can result in formation of an air gap between tube and fin. A number of numerical simulations was carried out for symmetric section of plate fin-tube heat exchanger to study the influence of air gap on heat transfer in forced convection conditions. Different locations of air gap spanning 1/2 circumference of the tube were considered, relatively to air flow direction. Inlet velocities were a variable parameter in the simulations (1– 5 m/s). Velocity and temperature fields for cases with air gap were compared with cases without it (ideal thermal contact). For the case of gap in the back of the tube (in recirculation zone) the lowest reduction (relatively to the case without gap) of heat transfer rate was obtained (average of 11%). The worst performance was obtained for the gap in the front (reduction relatively to full thermal contact in the average of 16%).

Go to article

Authors and Affiliations

Dariusz Andrzejewski
Marcin Łęcki
Artur Gutkowski
Download PDF Download RIS Download Bibtex

Abstract

Falling film, shell-tube type evaporators are commonly used heat exchangers for the production of fruit juice concentrate. The main problem in the design of the exchanger is a reliable estimation of wall heat transfer coefficients for all effects in real operating conditions. Most literature sources for the overall heat transfer coefficients are based on laboratory measurements, where the tubes are usually short, no fouling exists and the flow rate is carefully adjusted. This paper shows the heat transfer estimated in real industrial operating conditions, compared to literature sources. Paper is based on the author’s own experience in designing and launching several evaporators for juice concentrate production into operation. As a summary, the design heat transfer coefficients are provided with relation to sugar content in juice concentrate.

Go to article

Authors and Affiliations

Piotr Cyklis
Download PDF Download RIS Download Bibtex

Abstract

The paper describes experimental research on a resistojet type rocket thruster which was built as an actuator in the Attitude Control System of a model space robotic platform. A key element of the thruster is the heater responsible for increasing the temperature of the working medium in the thruster chamber and hence the specific impulse. This parameter describes the performance of the thruster, increases providing – for lower propellant consumption – the same propulsion effect (thrust). A high performance thruster means either total launch mass can be reduced or satellite lifetime increased, which are key commercial factors. During the first phase of the project, 7 different heating chamber designs were examined. The heater is made of resistive wire with resistivity of 9Ω/m. Power is delivered by a dedicated supply system based on supercapacitors with output voltage regulated in the range of 20–70 V. The experimental phase was followed by designing the chamber geometry and the heating element able to deliver both: maximum increase of gas temperature and minimum construction dimensions. Experiments with the optimal design show an increase in temperature of the working gas (air) by about 300 ◦C giving a 40% increase in specific impulse. The final effect of that is a 40% reduction in mass flow rate while retaining thrust at a nominal level of 1 N.

Go to article

Authors and Affiliations

Jan Kindracki
Łukasz Mężyk
Przemysław Paszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Construction elements of supercritical power plants are subjected to high working pressures and high temperatures while operating. Under these conditions high stresses in the construction are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stress limit. The goal is to find optimum operating parameters that can assure safe heating and cooling processes [1-5]. The optimum parameters should guarantee that the allowable stresses are not exceeded and the entire process is conducted in the shortest time. In this work new numerical method for determining optimum working parameters is presented. Based on these parameters heating operations were conducted. Stresses were monitored during the entire processes. The results obtained were compared with the German boiler regulations - Technische Regeln für Dampfkessel 301.

Go to article

Authors and Affiliations

Piotr Duda
Dariusz Rząsa
Download PDF Download RIS Download Bibtex

Abstract

The analysis of effectiveness of the gradient algorithm for the two-dimension steady state heat transfer problems is being performed. The three gradient algorithms - the BCG (biconjugate gradient algorithm), the BICGSTAB (biconjugate gradient stabilized algorithm), and the CGS (conjugate gradient squared algorithm) are implemented in a computer code. Because the first type boundary conditions are imposed, it is possible to compare the results with the analytical solution. Computations are carried out for different numerical grid densities. Therefore it is possible to investigate how the grid density influences the efficiency of the gradient algorithms. The total computational time, residual drop and the iteration time for the gradient algorithms are additionally compared with the performance of the SOR (successive over-relaxation) method.

Go to article

Authors and Affiliations

Stanisław Łopata
Paweł Ocłoń
Download PDF Download RIS Download Bibtex

Abstract

Anti-condensation coatings are widely used in refrigeration, air conditioning and ships technology. They can store a certain amount of water in its own volume, and then return it back in favorable conditions. Anti-condensation coatings are used also to protect structures from the moisture. This paper presents the results of experimental research on heat and mass transfer in an anti-condensation coating under natural and forced convection. Experimental results are obtained for horizontal and inclined plates. Experimental data are compared with different models of computation.
Go to article

Authors and Affiliations

Artur Rusowicz
Andrzej Grzebielec
Download PDF Download RIS Download Bibtex

Abstract

Secure and cost-effective power generation has become very important nowdays. Care must be taken while designing and operating modern steam power plants. There are regulations such as German boiler regulations (Technische Regeln für Dampfkessel 301) or European Standards that guide the user how to operate the steam power plants. However, those regulations are based on the quasi-steady state assumption and one dimensional temperature distribution in the entire element. This simplifications may not guarantee that the heating and cooling operations are conducted in the most efficient way. Thus, it was important to find an improved method that can allow to establish optimum parameters for heating and cooling operations. The optimum parameters should guarantee that the maximum total stresses in the construction element are in the allowable limits and the entire process is conducted in the shortest time. This paper summarizes mathematical descriptions how to optimize shut down process of power block devices. The optimization formulation is based on the assumption that the maximum total stresses in the whole construction element should be kept within allowable limits during cooling operation. Additionally, the operation should be processed in the shortest time possible.
Go to article

Authors and Affiliations

Dariusz Rząsa
Piotr Duda
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2nanoparticles, the second one contained Al2O3nanoparticles, and the third one the Cu nanoparticles.
Go to article

Authors and Affiliations

Kazimierz Rup
Konrad Nering
Download PDF Download RIS Download Bibtex

Abstract

A simplified isoperibol calorimetry method for measuring specific heat in solids is described. Taking advantage of the classical Nernst dependency the specific heat is calculated from time-domain temperature curves registered for a sample forced heating and natural cooling phase. In order to improve accuracy of the measurements a correction factor, taking into account the heat transferred to the surrounding, is introduced along with a procedure of statistical elimination of unavoidable measurement deviations. The method is implemented in a simple and straightforward measuring system involving no vacuum calorimeter. The method is applicable for quick and routine specific heat measurements performed on small solid dielectric or metallic specimens at near-room temperature. Test results of various materials used commonly in electrical engineering are demonstrated and discussed as well as comparison to drop calorimetry and differential scanning calorimetry reference measurements is included. The overall repeatability of the test method and the simplified apparatus is estimated as not worse than 2.6%.
Go to article

Authors and Affiliations

Leszek Moroń
Paweł Żyłka

This page uses 'cookies'. Learn more