Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 151
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objective of the submitted paper is to analyze the influence of the load on the calibration of micro-hardness and hardness testers. The results were validated by Measurement Systems Analysis (MSA), Analysis of Variance (ANOVA) and Z-score. The relationship between the load and micro-hardness in calibration of micro-hardness testers cannot be explained by Kick's Law (Meyer's index "n" is different from 2). The conditions of Kick's Law are satisfied at macro-hardness calibration, the values of "n" are close to 2, regardless of the applied load. The apparent micro-hardness increases with the increase of the load up to 30 g; the reverse indentation size effect (ISE) behavior is typical for this interval of the loads. The influence of the load on the measured micro-hardness is statistically significant for majority of calibrations.

Go to article

Authors and Affiliations

Jozef Petrík
Pavol Palfy
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of hard coal prices offered at the coal depots in Poland. Coal depots are one of the most popular forms of purchasing coal by Polish households. Prices refer to price offers for cobble coal (grain size: 60–120 mm) and their analysis is performed based on the regions rather than on all Polish provinces. From January 2010 to May 2019, there were two regions that were distinguished in terms of price spread: the S-W region and the N-E region. In the case of the S-W region, the difference between the province with the minimum price (Śląskie Province) and with the maximum price (Dolnośląskie Province since September 2017) ranged from PLN 53–83/ton, and in the N-E region the difference ranged PLN 64–130/ton. In the case of the remaining two regions, prices varied from a few to approximately PLN 80/ton for the N-W region, and from a few to about PLN 40 /ton for the S-E region. In order to determine how the origin of the coal affects its prices (domestic coal, imported coal), the analysis also included cobble coal price offers that are part of the Author’s own database created for several years. In the case of cobble coal from domestic producers, price offers varied betwwen PLN 14–33/GJ, and price offers for imported cobble coal stood varied between PLN 12–32/GJ. The N-E region attracted particular attention as the price offers for imported cobble coal reached a level similar to the offers from the S-W region, i.e. the region closest to Silesian coal mines. Price differentials within provinces belonging to a given region were influenced by the geographical rent. The paper also analyses average selling prices offered by domestic producers for various size grades of steam coal as well as selling prices for imported coal (free-at-frontier price).

Go to article

Authors and Affiliations

Katarzyna Stala-Szlugaj
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/ min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Go to article

Authors and Affiliations

P.K. Chaurasia
C. Pandey
N. Saini M.M. Mahapatra Giri A.
Download PDF Download RIS Download Bibtex

Abstract

Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through:

using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat

treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver

positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the

alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem.

Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in

water (20 0

C) followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing

plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams

describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its

microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to

expectations produces increased hardness of the material.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

Mechanical properties of aluminum-silicon alloys are defined by condition of alloying components in the structure, i.e. plastic metallic matrix created from solid solution  on the basis of Al, as well as hard and brittle precipitations of silicon. Size and distribution of silicon crystals are the main factors having effect on field of practical applications of such alloys. Registration of crystallization processes of the alloys on stage of their preparation is directly connected with practical implementation of crystallization theory to controlling technological processes, enabling obtainment of suitable structure of the material and determining its usage for specific requirements. An attempt to evaluate correlation between values of characteristic points laying on crystallization curves and recorded with use of developed by the author TVDA method (commonly denominated as ATND method) is presented in the paper together with assessment of hardness of tested alloy. Basing on characteristic points from the TVDA method, hardness of EN AC-AlSi9Mg alloy modified with strontium has been described in the paper in a significant way by the first order polynomial.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for

obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self

shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this

obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with

specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this

kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high

chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of

microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical

microscopy and X- ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited

materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences

in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of

investigated coatings.

Go to article

Authors and Affiliations

M. Gucwa
J. Winczek
M. Dośpiał
R. Bęczkowski
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with issues related to tribological processes occurring as a result of excessive wear of the surface of scraper conveyor components caused by the impact of the mined material created during drilling of development or exploitation galleries. One of the most common types of tribological wear is abrasive wear. W ear tests were carried out for hard coal – based abrasive using dry carbon abrasive and a hydrated mixture with 76 and 58% hard coal. Based on the conducted research, it was established that the effects of wear processes are associated with damage typical of wear mechanisms: micro-scratching and micro-fatigue. For the wear variant in the presence of dry coal abrasive, individual scratches caused by the abrasive grains were observed on the surface of the samples. The main reason for this type of damage was the aggregation of quartz, which is one of the basic components of the mineral substance present in the tested hard coal. When hydrated carbon mixtures were used as an abrasive, the surface of the samples also displayed scratches characteristic of the aggregate quartz. A small part of the carbon abrasive was pressed into the scratches. Under the influence of the wear caused by friction, small depressions were also formed, where coal penetrated. The effect of coal pressing into micro-scratches is related to its plastic properties. T ests of the abrasive conducted after the conclusion of wear tests have shown that under the influence of the local increase in temperature and pressure, the hard coal contained in the abrasive can undergo transformations. In the abrasive transformed under friction, small, but measurable changes in the content of the C element in relation to the initial hard coal sample were exhibited.

Go to article

Authors and Affiliations

Iwona Jonczy
ORCID: ORCID
Andrzej N. Wieczorek
Jacek Podwórny
Anna Gerle
Marcin Staszuk
ORCID: ORCID
Jacek Szweblik
Download PDF Download RIS Download Bibtex

Abstract

Running a business entails various risks which can significantly impact the economic and production results achieved by a given enterprise. One way of hedging certain risks is to use appropriately designed derivatives. This article presents the newest group of these contracts, i.e. swaps, and focuses on how these contracts can be used by Polish mining companies from the hard coal mining sector selling a part of their output on the global market. This article briefly characterises and presents types of swaps as well as the Polish swap market, pioneered by Polski Bank Rozwoju S.A. with the first FX swap of 1992. Since then, other types of transactions have also been included in the offering of domestic banks (assets swaps, cross-currency interest rate swaps). Mining companies producing hard coal have not been active on the swap market yet because of their poor activity on derivative markets. This article proposes a swap as an derivative hedging the hard coal price for a mining company exporting a part of its production to the global market. In the presented example, a mining company, by concluding a forward and an appropriately structured commodity swap, was able to both protect it self from a fall in the price and use additional gains due to prices rising in the global market. Apart from commodity swaps, mining companies can use FX swaps, IRS and other swaps described in the literature and commonly applied in practice by various economic entities, depending on the type of risk that needs hedging. A significant advantage of this kind of contract is that there is no need to freeze funds in security deposits, nor are there fees of other kinds (premiums) like those payable for other derivatives (futures, options).

Go to article

Authors and Affiliations

Edyta Brzychczy
Download PDF Download RIS Download Bibtex

Abstract

The work presents the test result of the influence of cooling rate on the microstructure of AZ91 alloy, Vickers micro-hardness and Brinell

hardness. Studies cooling and crystallization of AZ91 alloy was cast into the ceramic shells pre-heated to 180 ° C and then air-cooled at

ambient temperature or intensively super cooled in the liquid coolant. The TDA method was applied to record and characterize the thermal

effect resulting from the phase transformations occurring during the crystallization of AZ91 alloy. The kinetics and dynamics of the

thermal processes of crystallization of AZ91 alloy in the ceramic shells were determined. Metallographic tests were performed with the

use of an optical microscope. A comparison of these test results with the thermal effect recorded by way of the TDA method was made.

Influence of cooling rate of AZ91 on HV0, 01 micro-hardness and Brinell hardness alloy was examined.

Go to article

Authors and Affiliations

C. Rapiejko
E. Czekaj
T. Pacyniak
B. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

This paper focused on the effect of pure torsion deformation and various torsion pitches on the mechanical properties of the commercial pure Al wires which has not been examined so far. The initial wires with diameter of 4 mm have been torsion deformed to different pitch length (PL). In order to investigate the effect of gradient microstructure caused by torsion deformation, three different pitch length of 15 mm, 20 mm and 30 mm are considered. The results revealed that the level of grain refinement is correlated with the amount of induced plastic shear strain by torsion deformation. For the wire with pitch length of 15 mm, the grain sizes decreased to about 106 μm and 47 μm in the wire center and edge from the initial size of about 150 μm of the annealed wire. The micro-hardness measurement results show a gradient distribution of hardness from the wire center to the wire surface that confirmed the increasing trend of plastic shear strain obtained by FE simulations. The hardness of annealed sample (35 HV) is increased up to 73 HV at the wire surface for the smallest pitch length. The yield and ultimate tensile strength of the torsion deformed wires are also increased up to about 85 MPa and 152 MPa from the initial values of 38 MPa and 103 MPa of the annealed one respectively while the maximum elongation reduced significantly.
Go to article

Authors and Affiliations

M. Sedighi
A. Vaezi
M. Pourbashiri
Download PDF Download RIS Download Bibtex

Abstract

The paper presents properties of HS6-5-2 high speed steel subjected to deep cryogenic treatment (DCT) and subsequent tempering at different temperatures. DCT process of HS6-5-2 steel leads to shifting of maximum hardness peak to the lower temperature and the reduction of the obtained maximum hardness by about 1 HRC. These changes in hardness may be due to the shifting of the stage of nucleation and growth of carbide phases to lower temperatures or the changes taking place in the matrix, connected with the additional transformation of the martensite proceeding during the isothermal martensitic transformation occurring at cryogenic temperatures and more extensively occurring precipitation processes, lowering the content of the carbon in the martensite, determining thereby its lower hardness.
Go to article

Authors and Affiliations

A. Ciski
Download PDF Download RIS Download Bibtex

Abstract

Aluminium based metal matrix composite (Al-MMC’s) are much popular in the field like automobile and aerospace industries, because of its ease of fabrication process and excellent mechanical properties. In this study, Al-Zn-Mg alloy composite reinforced with 3, 6 and 9 v % of zircon sand was synthesised by stir casting technique. The microstructure of the composites revealed uniform distribution of reinforced particles. Hardness, tensile strength and wear resistance of Al-Zn-Mg alloy/zircon sand composite were found to increase with increase in v % percentage of zircon sand. Scanning Electron Microscope analysis of wear tested sample surface of composites revealed no evidence of plastic deformation of matrix phase. Particle pulls out and abrasive wear was the common feature observed from all the composites.
Go to article

Authors and Affiliations

Satish Kumar T.
K. Krishna Kumar
S. Shalini
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the heat treatment of the hot-dip zinc coating deposited on both cast iron and steel. The aim of research is to increase coating hardness and wear resistance without decreasing its anticorrosion properties. Hot-dip zinc coating was deposited in industrial conditions (acc. PN-EN ISO 10684) on disc shape samples and bolts M12x60. The achieved results were assessed on the basis of microscopic observation (with the use of an optical and scanning microscope), EDS (point and linear) analysis and micro-hardness measurements. It was discovered that the heat treatment of zinc coating results in an increase in hardness which is caused by the corresponding changes in microstructure.

Go to article

Authors and Affiliations

D. Jędrzejczyk
E. Szatkowska
Download PDF Download RIS Download Bibtex

Abstract

The present work, presented the study of effect of different inoculants on impact toughness in High Chromium Cast Iron. The molds were

pouring in industrial conditions and samples were tested in laboratory in Faculty of Foundry Engineering at AGH. Seven samples were tested

- one reference sample, three with different addition of Fe-Ti, and three with different addition of Al. The samples were subjected to impact

toughness on Charpy hammer and the hardness test. The presented investigations indicate that for the each inoculant there is an optimal

addition at which the sample obtained the highest value of impact toughness. For the Fe-Ti it is 0.66% and for Al is 0.17%. Of all the

examined inoculants best results were obtained at a dose of 0.66% Fe-Ti. Titanium is a well-known as a good modifier but very interesting

results gives the aluminum. Comparing the results obtained for the Fe-Ti and Al can be seen that in the case of aluminum hardness is more

stable. The hardness of all samples is around 40-45 HRC, which is not high for this type of cast iron. Therefore, in future studies it is

planned to carry out the heat treatment procedure that may improves hardness.

Go to article

Authors and Affiliations

D. Siekaniec
D. Kopyciński
E. Guzik
E. Tyrała
A. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of Ti-addition to High Chromium Cast Iron (HCCI) on the structure and selected mechanical properties. For this

study casted two sets of cylinders with dimensions ø20 mm, ø15 mm x 250 mm, for the High Chromium Cast Iron (HCCI) and with the

4% by mass Ti-addition. Melts were performed in the induction furnace crucible capacity of 15 kg. During the heats the cup with installed

S type thermocouple was poured to record the cooling curves. The cylinders were subjected to the static bending strength test. Samples for

the test microstructure and Rockwell hardness were cut from the cylinders. The study shows that the addition of titanium had an impact on

the structure and thus the properties of High Chromium Cast Iron (HCCI). In subsequent studies, through an appropriate choice of

chemical composition and proper process control, it is planned to obtain in the structure the titanium carbides TiC and chromium carbides

with type (Cr, Fe)7C3.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
D. Siekaniec
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the technology of manufacturing layered castings, consisting of grey cast iron (base part) and high-chromium stainless steel (working part/layer). The aim of researches was an attempt of integration of heat treatment of steel X46Cr13 grade with founding of grey cast iron in bimetallic system and determination of the influence of cooling rate of bimetallic system in classical sand mould with bentonite on microstructure and hardness of the working layer. The castings were manufactured using mould cavity preparation method, where steel plate was poured by grey cast iron using different pouring temperature and thickness of base part. Then, the quality of joint between cast iron and steel plate was estimated by using ultrasonic non-destructive testing. The efficiency of heat treatment process was analysed by measurement of hardness and in metallographic examination. Conducted studies showed, that self-hardening’s ability of steel X46Cr13 let obtain technologically usable layered casting characterized by hardness of working surface up to 35 HRC.

Go to article

Authors and Affiliations

N. Przyszlak
T. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies to determine the effect of complex surface and bulk modification and double filtration during mould pouring on the stereological parameters of macrostructure and mechanical properties of castings made from the post-production waste IN-713C and the MAR-247 nickel alloys. The evaluation covered the number of grains per 1mm2 of the sample surface area, the average area of grains and the shape index, hardness HB, tensile strength and resistance to high temperature creep. The results indicate the possibility of controlling the stereological parameters of macrostructure through application of several variants of the modification, controlling in this way also different low- and high-temperature properties. The positive effect of double filtration of the alloy during mould pouring on the metallurgical quality and mechanical properties of castings has also been emphasized.

Go to article

Authors and Affiliations

P. Gradoń
F. Binczyk
M. Mańka
Download PDF Download RIS Download Bibtex

Abstract

Al- and Al/Zn-enriched layers containing intermetallic phases were deposited on the Mg substrate by heating the Mg specimens in contact with the powdered materials in a vacuum furnace. The Al-enriched surface layers were produced using Al powder, whereas the Al/Znenriched layers were obtained from an 80 wt.% Al + 20 wt.% Zn powder mixture. The microstructure and composition of the layers were analyzed by optical microscopy, scanning electron microscopy and X-ray diffraction. The results showed that the Al-enriched layer comprised an Mg17Al12 intermetallic phase and a solid solution of Al in Mg. The layer obtained from the Al+Zn powder mixture was composed of Mg-Al-Zn intermetalic phases and a solid solution of Al and Zn in Mg. Adding 20% of Zn into the Al powder resulted in the formation of a considerably thicker layer. Moreover, the hardness of the surface layers was much higher than that of the Mg substrate.

Go to article

Authors and Affiliations

R. Mola
Download PDF Download RIS Download Bibtex

Abstract

Refinement is one of the most energy consuming technological process, aimed at obtaining mineral raw materials of the proper grain size.

Cast structural elements such as jaws or hammers in crushing machines operate under conditions of an intensive wear. The data indicate

that 80 % of failures of machines and devices is caused by wearing of rubbing surfaces. This problem became the subject of several

scientific and industrial investigations carried out in the whole world in order to produce materials ultra- wear resistant. Methods allowing

to obtain wear resistant composite castings are discussed in the hereby paper. Within the performed research microstructures of the

produced composite zones were presented and the comparative analysis with regard to mechanical and functional properties of local

composite reinforcements in relation to the commercial alloys of increased wear resistance was performed. The results show almost twenty

five times increase in wear resistance compared to manganese cast steel containing 18 % Mn.

Go to article

Authors and Affiliations

E. Olejnik
T. Tokarski
B. Grabowska
Ł. Szymański
P. Kurtyka
W. Maziarz
P. Czapla
Download PDF Download RIS Download Bibtex

Abstract

Heat treatment of a casting elements poured from silumins belongs to technological processes aimed mainly at change of their mechanical

properties in solid state, inducing predetermined structural changes, which are based on precipitation processes (structural strengthening of

the material), being a derivative of temperature and duration of solutioning and ageing operations. The subject-matter of this paper is the

issue concerning implementation of a heat treatment process, basing on selection of dispersion hardening parameters to assure

improvement of technological quality in terms of mechanical properties of a clamping element of energy network suspension, poured from

hypoeutectic silumin of the LM25 brand; performed on the basis of experimental research program with use of the ATD method, serving

to determination of temperature range of solutioning and ageing treatments. The heat treatment performed in laboratory conditions on a

component of energy network suspension has enabled increase of the tensile strength Rm and the hardness HB with about 60-70%

comparing to the casting without the heat treatment, when the casting was solutioned at temperature 520 o

C for 1 hour and aged at

temperature 165 o

C during 3 hours.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the capabilities of welding techniques to creating properties of wear resistant high chromium cast iron alloy. The use

of the right kind of welding sequence allows you to change the structure and properties of the obtained welds. Tests were conducted for

one type of additive material in the form of self shielded core wire. In order to determine the effect of the type of welding sequence on the

properties of welds performed welding using string bead and weave bead. The resulting weld was tested on hardness and research structure

in an optical microscope. In the following studies have been made erosive tests wear of made hardfacing. String beads gave structure rich

in carbides and harder about 270 HV of the weld with weave bead. Also, wear resistance was nearly twice as better for welds made with

string beads. In the experiment a decisive role in the resistance to wear plays a high hardness of the deposit and the presence of carbides in

its structure. Changes in the basic parameters of the deposition process allows for the formation of structure and properties of hardfacing

welds in a wide range.

Go to article

Authors and Affiliations

T. Wyleciał
M. Gucwa
J. Winczek
R. Bęczkowski
Download PDF Download RIS Download Bibtex

Abstract

Welding strength is very important in safe use of polypropylene sheets. The determination of welding parameters and design of the welding tool has an impact on the weld strength. The welding parameters can be determined experimentally. In this study, Charpy impact test is used to determine suitable welding parameters in welding of polypropylene sheets with FSW method. At the same time, the weld zone microstructure is examined and Shore hardness measurements are made. The impact tests were performed on samples cut from the welded sheets. The impact tests values and hardness values were presented graphically. According to the test results, some welded parts behaved similar to the matrix material. In some welding parameters, Charpy impact test values were obtained close to values of the main materials. The suitable welding parameters were determined for polypropylene sheets welding.

Go to article

Authors and Affiliations

İ. Küçükrendeci
Download PDF Download RIS Download Bibtex

Abstract

The aim of the performed experiments was to determine the influence of deformation and of austenitization temperature on the kinetics of phase transformations during cooling of high-carbon steel (0.728 wt. % C). The CCT and DCCT diagrams for austenitization temperature 940°C and DCCT diagram for austenitization temperature 1000°C were constructed with the use of dilatometric tests. On the basis of obtained results, a featureless effect of austenitization temperature and deformation on the kinetics of phase transformations during cooling of investigated steel was observed. Critical cooling rates for the transformation of martensite in microstructure fluctuated from 5 to 7°C · s–1 (depending on the parameters of austenitization and deformation), but only at cooling rates higher than 8°C · s–1 a dominant share of martensite was observed in the investigated steel, which resulted in the significant increase of hardness.

Go to article

Authors and Affiliations

P. Kawulok
P. Podolinský
P. Kajzar
I. Schindler
R. Kawulok
V. Ševčák
P. Opěla

This page uses 'cookies'. Learn more