Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Keywords HTAC gas combustion
Download PDF Download RIS Download Bibtex

Abstract

HTAC (High Temperature Air Combustion) technology is one of the most important achievements in combustion engineering of recent years. The main idea of the technology is to organize combustion in such a way that reaction takes place in almost whole volume of combustion chamber with very uniform gas and temperature field. It can be done by preheating air above the ignition temperature of fuel, separation of air and fuel nozzles and by high recirculation inside the combustion chamber. Uniform and moderated temperatures result in very low thermal NO emission, and on the other hand, long enough rcsiclcncc time in the chamber results in low CO and incomplete products emission. In this paper authors present simple mathematical model which allows for estimation of influence of air temperature and flue gas recirculation rate on final emission on NO and CO.
Go to article

Authors and Affiliations

Kamil Malczyk
Andrzej Szlęk
Download PDF Download RIS Download Bibtex

Abstract

The paper aims to confirm the syngas application as a reburning fuel to reduce e.g. NO emission during natural gas combustion. The main aim of this modelling work was to predict pollutants generated in the exhaust gases and to indicate the influence of the syngas on the natural gas combustion process. The effect of residence time of fuel-air mixture was also been performed. Calculations were made with CHEMIKN-PRO for reburning process using syngas. The boundary conditions of the reburning process were based on experimental investigations. The addition of 5, 10, 15 and 19% of reburning fuel into natural gas combustion was studied. The effects of 0.001 to 10 s of residence time and the addition of 5, 10, and 15% of syngas on combustion products were determined. The performed numerical tests confirmed that co-combustion of the natural gas with syngas (obtained from sewage sludge gasification) in the reburning process is an efficient method of NOx reduction by c.a. 50%. Syngas produced from sewage sludge can be utilised as a reburning fuel.

Go to article

Authors and Affiliations

Małgorzata Wilk
Aneta Magdziarz
Monika Zajemska
Monika Kuźnia
Download PDF Download RIS Download Bibtex

Abstract

The work contains a description of a developed experimental and theoretical method of modeling of solid waste combustion in a device equipped with a moving grate and capability to optimize the work of waste incineration plant. Implementation of this issue was based on results of experimental studies made on a laboratory scale boiler. This was possible by defining and testing indicators of quantitative assessment of combustion such as: reaction front rate, ignition rate, the rate of combusted mass loss and the heat release rate. These indicators as measurable "criteria indicators" allow transfer of parameters from a laboratory-scale unit, working in the transient regime into an industrial full scale grate device working continuously in stable determined conditions. This allows for wide optimization possibilities in the operation of a waste incineration plant, in particular the combustion chamber, equipped with a moving grate system.
Go to article

Authors and Affiliations

Tomasz J. Jaworski
Krzysztof Pikoń
Małgorzata Kajda-Szcześniak
Download PDF Download RIS Download Bibtex

Abstract

The author has developed and patented several types of gas cupola furnaces, which, due to replacing coke with gas, do not emit carbon monoxide, sulfur dioxide and coke dust. The author has defined the optimal modes of gas-and-air mixture combustion, i.e. the optimal coefficient of air discharge and gas mixture escape speed in melting cast iron. It has been experimentally proved that from the point of view of obtaining the maximum temperature, the optimal was the process with some lack of air, i.e. with α = 0.98. The results of metallurgical studies used in the article allowed to develop an optimal structure of the gas cupola furnace with a heterogeneous refractory filling, and to establish the optimal composition of the filling. For the first time the optimal composition of the filling is given: 40% of chamotte, 30% of high-alumina refractory, 30% of electrode scrap. It has been noted that when gas cupola furnaces were used, the main environmental advantage was the reduction of dust emission into the atmosphere, CO and SO2 content.
Go to article

Authors and Affiliations

V. Grachev

This page uses 'cookies'. Learn more