Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper proposes a newrobust fuzzy gain adaptation of the sliding mode (SMC) power control strategy for the wind energy conversion system (WECS), based on a doubly fed induction generator (DFIG), to maximize the power extracted from the wind turbine (WT). The sliding mode controller can deal with any wind speed, ingrained nonlinearities in the system, external disturbances and model uncertainties, yet the chattering phenomenon that characterizes classical SMC can be destructive. This problem is suitably lessened by adopting adaptive fuzzy-SMC. For this proposed approach, the adaptive switching gains are adjusted by a supervisory fuzzy logic system, so the chattering impact is avoided. Moreover, the vector control of the DFIG as well as the presented one have been used to achieve the control of reactive and active power of the WECS to make the wind turbine adaptable to diverse constraints. Several numerical simulations are performed to assess the performance of the proposed control scheme. The results show robustness against parameter variations, excellent response characteristics with a reduced chattering phenomenon as compared with classical SMC.
Go to article

Authors and Affiliations

Mohamed Horch
1
ORCID: ORCID
Abdelkarim Chemidi
2
ORCID: ORCID
Lotfi Baghli
3
ORCID: ORCID
Sara Kadi
4
ORCID: ORCID

  1. Laboratoire d’Automatique de Tlemcen (LAT), National School of Electrical and Energetic Engineering of Oran, Oran 31000, Algeria
  2. Manufacturing Engineering Laboratory of Tlemcen, Hight School of Applied Sciences, Tlemcen 13000, Algeria
  3. Laboratoire d’Automatique de Tlemcen (LAT) Université de Lorraine GREEN, EA 4366F-54500, Vandoeuvre-lès-Nancy, France
  4. Laboratory of Power Equipment Characterization and Diagnosis, University of Science and Technology Houari Boumediene, Algiers 16000, Algeria

This page uses 'cookies'. Learn more