Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 28
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article explores the possibility of using the authors’ three new methods of unconventional extrusion of deep hollows to be used for the manufacture of spline sleeves intended for internal toothing couplings. Two invention patents, PL206466 and PL224121, and one patent application, P.416772, were used for this purpose. Numerical computations were made in the Forge®3D program for the conceptual schemes of forming sleeves. The aim of those computations was to determine the extrusion forces and to compare them with the conventional indirect and direct extrusion methods. Then, on models based on the authors’ plastic forming schemes, numerical computations were made, from which the actual energy and force parameters were determined in the form of the relationship of extrusion force versus forming tool path. Also, the degree of fill of the passes, in which spline sleeve toothing is formed, was determined.

Go to article

Authors and Affiliations

J. Michalczyk
S. Wiewiórowska
Download PDF Download RIS Download Bibtex

Abstract

The study discusses the issues of low durability of dies used in the first operation of producing a valve type forging from high nickel steel assigned for the application in motor truck engines. The analyzed process of manufacturing the exhaust valve forgings is realized in the coextrusion technology, followed by forging in closed dies. This process is difficult to master, mainly due to elevated adhesion of the charge material (high nickel steel – NCF3015) to the tool substrate as well as very high abrasive wear of the tool, most probably caused by the dissolution of hard carbide precipitates during the charge heating. A big temperature scatter of the charge during the heating and its short presence in the inductor prevents microstructure homogenization of the bearing roller and dissolution of hard precipitates. In effect, this causes an increase of the forging force and the pressures in the contact, which, in extreme cases, is the cause of the blocking of the forging already at the beginning of the process. In order to analyze this issue, complex investigations were conducted, which included: numerical modelling, dilatometric tests and hardness measurements. The microstructure examinations after the heating process pointed to lack of structure repeatability; the dilatometric tests determined the phase transformations, and the FEM results enabled an analysis of the process for different charge hardness values. On the basis of the conducted analyzes, it was found that the batch material heating process was not repeatable, because the collected samples showed a different amount of dissolved carbides in the microstructure, which translated into different hardnesses (from over 300 HV to 192 HV). Also, the results of numerical modeling showed that lower charge temperature translates into greater forces (by about 100 kN) and normal stresses (1000 MPa for the nominal process and 1500 MPa for a harder charge) and equivalent stresses in the tools (respectively: 1300 MPa and over 1800 MPa), as well as abrasive wear (3000 MPa mm; 4500 MPa mm). The obtained results determined the directions of further studies aiming at improvement of the production process and thus increase of tool durability.
Go to article

Authors and Affiliations

M.R. Hawryluk
1
ORCID: ORCID
M. Lachowicz
1
ORCID: ORCID
M. Janik
1
ORCID: ORCID
Z. Gronostajski
1
ORCID: ORCID
M. Stachowicz
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of influence of change of physical parameters such as: temperature, friction coefficient and load, during the process of die forging. Optimization of the process effects in achieving high quality products, decreasing shaping resistance, and what follows – lower energy consumption. Temperature is the basic factor affecting the process of plastic working. Analyzing that influence in individual die fragments, allows to engineer the flow of shaped material. The QForm3D commercial program for finite element method calculations was used for numerical simulations. The paper presents multi-variant analysis of forging process with the usage of numerical simulation, which provided many valuable information concerning changes of key parameters, such as: temperature, stress and strain distribution and variations of technological parameters, as well as their mutual influence, difficult to obtain in analysis of industrial process.
Go to article

Authors and Affiliations

M. Nabrdalik
1
ORCID: ORCID
M. Sobociński
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Tests were performed on example tools applied in hot die forging processes. After withdrawal from service due to excessive wear, these tools can be regenerated for re-use through machining and hardfacing. First, analysis of worn tools was carried out for the purpose of identifying tool working conditions and wear mechanisms occurring in the surface layer of tools during forging. Testing of worn tools included observations under a microscope, surface scanning and microhardness measurement in the surface layer. The results indicate very diverse work conditions, which suggest the application of different materials and hardfacing tool regeneration technology in individual die forging processes.
Go to article

Authors and Affiliations

P. Widomski
1
ORCID: ORCID
M. Kaszuba
1
ORCID: ORCID
J. Krawczyk
1
ORCID: ORCID
B. Nowak
2
ORCID: ORCID
A. Lange
1
ORCID: ORCID
P. Sokołowski
1
ORCID: ORCID
Z. Gronostajski
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Department of Metal Forming, Welding and Metrology, 7-9 Lukasiewicza Str., 50-371, Wroclaw, Poland
  2. CEO, Kuźnia Jawor S.A. Poland
Download PDF Download RIS Download Bibtex

Abstract

The article reports the results of a comparative analysis made for three novel unconventional gear wheel forging processes based on the authors’ patented [5,6,21] plastic forming methods developed chiefly for the purposes of extruding hollow products as well as valves and pins. These processes are distinguished by the fact that part of the tooling elements which are normally fixed during conventional forging are purposefully set in motion. This is intended to change the conditions of friction at the metal-tool contact surface and to induce additional thermal effects due to the transformation of the plastic deformation energy into thermal energy and, as a consequence, to improve the plastic flow of metal and to reduce the force parameters of the process.

Go to article

Authors and Affiliations

J. Michalczyk
S. Wiewiórowska
Z. Muskalski
Download PDF Download RIS Download Bibtex

Abstract

The article proposes the implementation of a novel method of plastic forming of internal toothing in flange spline sleeves. A method being the subject of Polish patent application P.416772 has been used for this purpose, which involves a combination of the scheme of the direct extrusion of a cone hollow with the die press forming of the wall to obtain a flange. The entire process takes place in a single technological sequence. The operations come one after another, so that there is no need for reheating the stock or carrying out intermediate soft annealing. The proposed method is assumed to be an alternative to the operation of press forming of internal spline sleeve toothing in a conical die [1] and to the operation of swaging on rotary swaging machines [2]. It is assumed that this method, too, is alternative to other technologies known from the literature and industrial practice, whose specifications and literature references will be indicated later on in this paper. Computer simulations of the flanged sleeve plastic forming process were performed using the commercial numerical program Forge®3D. During the numerical computations, the distributions of temperature fields were determined on the cross-section of the plastically formed product. The computations enabled also the visualization of the plastic flow of metal, especially in the toothing forming regions, and the determination of the energy and force parameters of the process.

Go to article

Authors and Affiliations

J. Michalczyk
S. Wiewiórowska
Z. Muskalski
Download PDF Download RIS Download Bibtex

Abstract

The hydrogen embrittlement of metals is caused by the penetration and accumulation of hydrogen atoms inside the metal. The failure of the product due to hydrogen embrittlement is delayed in time and does not occur immediately after its manufacture, but several hours, days, or even weeks later. Therefore, the chances of detecting hydrogen embrittlement when checking the quality of the finished product are very slim. The use of high-strength bolts in industry is associated with the risk of hydrogen embrittlement. This phenomenon poses a threat to the safe use of devices by limiting or completely losing the functionality of the bolt joint. Even a low influence of moisture can trigger failure mechanisms.
The article proposes a method for assessing the risk of hydrogen embrittlement for high-strength bolts in class12.9. For this purpose, bolts made of material grade 32CrB4 were prepared and in a controlled manner the grain flow inconsistency was made, leading in extreme cases to the production of the forging lap. To perform the study, the device proposed by the European Assessment Document (EAD) was adapted to the testing of hydrogen embrittlement of threaded fasteners in concrete. The concrete substrate was replaced with metal spacers that were preloaded with a bolt. The use of the wedge distance under the bolt head led to the generation of two stress states – tensile and compressive, which translated into an increased risk of hydrogen embrittlement. After being tested, the bolts were visually and microscopically inspected to assess potential locations for cracks and hydrogen propagation. As a result of the conducted tests, it was found that the prepared test method allows to assess the resistance or susceptibility of the bolt to threats related to hydrogen embrittlement.
Go to article

Authors and Affiliations

T. Dubiel
1
ORCID: ORCID
T. Balawender
2
ORCID: ORCID
M. Osetek
1
ORCID: ORCID

  1. Koelner Rawlplug IP Sp. z o.o. Oddział w Łańcucie, Rzeszów University of Technology
  2. Rzeszów University of Technology, Departament of Materials Forming and Processing, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of cold forging is a widely used solution in many industries. One application is the manufacture of bolts and fasteners. The largest amounts of bolts are used in the automotive and machine industry. Those customers demand high standards of quality and reliability from producers based on ISO 9001 and IATF 16949. Also, the construction, agriculture and furniture industries are raising their expectations for deliveries from year to year.
Automotive companies issue their standards specifying specific requirements for products. One of these standards is the aviation standard SAE USCAR 8-4; 2019, which speaks of a compatible arrangement of fibers in the bolt head and in the area of transition into the mandrel.
The article presents the cold forging process of flange bolts. Obtaining a compatible, acceptable and incompatible grain flow pattern based of the above mantioned standard was presented. Then the results of FEM simulation were correlated with the performed experiment.
The effect of incompatible grain flow system was discussed and presented as the crack initiating factor due to delta ferrite, hydrogen embrittlement, tempering embrittlement. The reliability of the connections was confirmed in the assembly test for yield stress on a Schatz machine. The advantages of this method and the difference compared to the tensile test were presented.
Go to article

Bibliography

[1] IA TF 16949: 2016 – Automotive Quality Management System Standard.
[2] ISO 9001: 2015 – Systemy zarządzania jakością – Wymagania.
[3] A. Komornicka, M. Sąsiadek, T. Nahirny, Wyzwania przemysłu motoryzacyjnego w świetle wprowadzania standardów IATF 16949:2016, [in:] R. Knosali, Innowacje w Zarządzaniu i Inżynierii Produkcji, Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
[4] S. Ziółkiewicz, S. Stachowiak, D. Kaczmarczyk, A. Karpiuk, Obróbka Plastyczna Metali 17 (1), 7-13 (2006).
[5] A. Żmudzki, P. Skubisz, J. Sińczak, M. Pietrzyk, Obróbka Plastyczna Metali 17 (3), 9-19 (2006).
[6] N . Biba, S. Stebounov, A. Lishiny, J. Mater. Process. Tech. 113, 34-39 (2001).
[7] M Saad, S. Akhtar, M. Srivastava, J. Chaurasia, Materials Today: Proceedings 5, 19576-19585 (2018).
[8] A . Dubois, L. Lazzarotto, L. Dubar., J. Oudin, Wear 249, 951-961 (2002).
[9] Y . Nugraha, Theory of WireDrawing, Tirtayasa University (2007).
[10] S.Y. Hsia, Y.T. Chou, J.C. Chao, Advances in Mechanical Engineering 8 (3), 1-10 (2016).
[11] R . Bussoloti, L. Albano, L. de Canale, G.E. Totten, Delta Ferrite: Cracking of Steel Fasteners, [in:] R. Colás, G.E. Totten, Encyclopedia of Iron, Steel, and Their Alloys, Five-Volume Set, CRC Press (2006).
[12] D .H. Herring, Indust Heat 73 (16), 9 (2006).
[13] S.V. Brahimi, S. Yue, K.R. Sriraman, Philos. Trans. A Math. Phys. Eng. Sci. 375 (2098), (2017).
[14] SAE USCAR 8-4;2019 „Grain Flow Pattern for Bolts, Screws and Studs”.
[15] PN -EN 26157-3. Części złączne – Nieciągłości powierzchni – Śruby, wkręty i śruby dwustronne specjalnego stosowania.
[16] ISO 898-1:2013-06 Własności mechaniczne części złącznych wykonanych ze stali węglowej oraz stopowej – Część 1: Śruby i śruby dwustronne o określonych klasach własności – Gwint zwykły i drobnozwojny.
[17] ISO 16047:2007 Części złączne – Badanie zależności moment obrotowy/siła zacisku.
Go to article

Authors and Affiliations

T. Dubiel
1
ORCID: ORCID
T. Balawender
2
ORCID: ORCID
M. Osetek
1
ORCID: ORCID

  1. Koelner Rawlplug IP Sp. z o. o. Oddział w Łańcucie / Rzeszów University of Technology, Poland
  2. Rzeszów University of Technology, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of stresses in the current tool system of the die during the implementation of the third forging operation of the screw M12 class 10.9 with cylinder head and hexagonal socket. It was assumed that the level of negative cracking due to stress can be reduced by using a mounting interference between the die and the tube blank. Due to the design of the tool system value of the die, the interference value cannot be too large. Therefore, an analysis of the influence of the interference between the die and the tube blank in a die tool system on the value and distribution of stresses in the individual components. An analysis of the assembly stresses and the stresses occurring during the process of deformation of the shaped head of the screw was done. The calculations were performed using a commercial software package MARC / Mentat.

Go to article

Authors and Affiliations

I. Nowotyńska
S. Kut
M. Osetek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The impulse noise is agent harmful to health not only in the case of shots from firearms and the explosions of explosive materials. This kind of noise is also present in many workplaces in the industry. The paper presents the results of noise parameters measurements in workplaces where four different die forging hammers were used. The measured values of the C-weighted peak sound pressure level, the A-weighted maximum sound pressure level and A-weighted noise exposure level normalized to an 8 h working day (daily noise exposure level) exceeded the exposure limit values. For example, the highest measured value of the C-weighted peak sound pressure level was 148.9 dB. In this study possibility of the protection of hearing with the use of earplugs or earmuffs was assessed. The measurement method for the measurements of noise parameters under hearing protection devices using an acoustical test fixture instead of testing with the participation of subjects was used. The results of these measurements allows for assessment which of two tested earplugs and two tested earmuffs sufficiently protect hearing of workers in workplaces where forging hammers are used.

Go to article

Authors and Affiliations

Emil Kozłowski
Rafał Młyński
Jan Adamczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a description of the phenomena occurring on the surface of the forging dies. A detailed analysis was made of 24 pre-forging dies due to the most intensive wear in this operation. To compare the results, new tools were also analysed. The research described in the study showed that the most dangerous factor for the hot forging process analysed is thermal-mechanical fatigue, which causes small cracks, which in turn quickly leads to the formation of a crack network on the entire contact surface of the tool with forged material. The second phenomenon is the tempering of the surface of the material for a long-term temperature effect. The presence of hard iron oxides in the form of scale from forging material is the accompanying phenomenon that intensifies the processes of tool wear. The paper presents the results of the analysis of the presence of residual magnetic field for forging tools and the results of laboratory tests of wear processes of tool steels for hot work in the presence of a magnetic field and in the presence of scale.

Go to article

Authors and Affiliations

M. Zwierzchowski
Download PDF Download RIS Download Bibtex

Abstract

The present paper reports the results of theoretical and experimental studies of the process of die forging a bimetallic door handle intended for the production of a helicopter. The aim of the studies was to develop and implement a technology for die forging of a product with a specific mass similar to that of magnesium alloys which will have, however higher corrosion resistance. Numerical modelling and industrial tests were carried out based on the previously forging processes for an AZ31 alloy door handle. The material for the tests was a bimetallic bar produced by the explosive welding method, in which the core was of alloy AZ31, and the cladding layer was made of 1050A grade aluminium. The studies were conducted for two variants: Variant I – the forging process was mapped by numerical modelling and industrial tests for the die shape and parameters used in the forging of the AZ31 alloy door handle, Variant II – the tool shape was optimized and process parameters were selected so as to obtain a finished product characterized by a continuous Al layer.

From the theoretical studies and experimental tests carried out it has been found that the application of the Variant I does not assure that a finished door handle characterized by a continuous cladding layer will be produced. Within this study, a novel method of bimetallic door handle die forging (Variant II) has been developed, which limits the amount of the flash formed and assures the integrity of the cladding layer.

Go to article

Authors and Affiliations

P. Szota
S. Mróz
A. Gontarz
A. Stefanik
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the multi-operation hot die forging process, performed on a press, of producing a lever forging used in the motorcycles of a renowned producer by means of numerical simulations. The investigations were carried out in order to improve (perfect) the currently applied production technology, mainly due to the presence of forging defects during the industrial production process. The defects result mainly from the complicated shape of the forging (bent main axis, deep and thin protrusions, high surface diversity in the cross section along the length of the detail), which, during the filling of the die by the deformed material, causes the presence of laps, wraps and underfills on the forging. Through the determination of the key parameters/quantities during the forging process, which are difficult to establish directly during the industrial process or experimentally, a detailed and complex analysis was performed with the use of FEM as well as through microstructure examinations. The results of the performed numerical modelling made it possible to determine: the manner of the material flow and the correctness of the impression filling, as well as the distributions of temperature fields and plastic deformations in the forging, and also to detect the forging defects often observed in the industrial process. On this basis, changes into the process were introduced, making it possible to improve the currently realized technology and obtain forgings of the proper quality as well as shape and dimensions.

Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Rychlik
Z. Gronostajski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a prototype semi-industrial cooling line developed by the authors, which makes it possible to design a thermal treatment of forgings with the use of the forging heat, together with exemplary test results for forgings forked type. The proposed method of heat treatment dedicated to these forgings was described and compared to traditionally used heat treatment method in chamber furnaces. Next, the original research stand was presented, which performs mechanical fatigue test on final products – forked-type forgings. Forgings after heat treatment and cooling on the prototype line were tested on this stand in condition of cyclically variable mechanical loads in order to resistance to mechanical fatigue was analyzed and the influence of performed exemplary heat treatment on mechanical properties. The presented preliminary investigations performed on the designed combined research standing, consisting of: the prototype controlled cooling line, as well as mechanical fatigue stand point to the possibility of implementing thermal treatment with the use of the heat generated during the forging process and determining its impact on the mechanical properties of forgings.

Go to article

Authors and Affiliations

Z. Gronostajski
ORCID: ORCID
M. Hawryluk
P. Jabłoński
M. Zwierzchowski
A. Barelkowski
P. Widomski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Liquid forging alias squeeze casting gives the combined advantage of casting and forging. Optimum process parameters are important to get a cost-efficient process. In this study, four materials have been identified, which are extensively used in industries. These materials are commercially pure Al and three Al-alloys namely, 2124, 2218 and 6063. The pouring temperature and the mold temperature is maintained at 700oC and 250oC respectively. The materials were developed at seven pressure variations from 0 to 150 MPa. The effect of the pressure on the microstructures, porosity, and hardness has been reported. The coefficient of solubility is estimated for all materials and a polynomial relationship is found to be the best fit with the applied pressure. The pressure of 100 MPa gives better increment in hardness. The melting point and the freezing coefficient of the materials under study have been determined. A linear relationship between the pressure and the freezing time is deduced. It is observed that the solubility and the freezing coefficients depend on the pressure as well, in addition to the composition and temperature.

Go to article

Authors and Affiliations

Vineet Tirth
Amir Arabi
Download PDF Download RIS Download Bibtex

Abstract

The forming limit of AZ31 alloy, a representative Mg-Al-Zn-based wrought alloy, and the effect of severe plastic deformation (SPD) by examining the microstructure change caused by dynamic recrystallization led by high temperature and high dislocation density at 300℃ using a biaxial alternate forging (BAF) were investigated in this study. As a result of BAF test for AZ31 Mg alloy, significant cracks on the ends of workpieces occurred after 7 passes. The microstructure of as-extruded specimen showed the non-uniform distribution of the relatively coarse grains and the fine grains considered to be sub-grains. However, as the number of passes increases, the area of coarse grains gradually disappeared and the fine grains became more dominant in the microstructures. The result of tensile test for workpieces with each forging pass showed an increase in strength depending on pass number was shown with a slight increase of elongation. The Electron Backscatter Diffraction (EBSD) results exhibited that, the microstructure showed the presence of coarse grains and twins after only 1 pass, while the grains appeared to be significantly refined and uniformly distributed after 3 pass, at which the strength and elongation began to increase, simultaneously.
Go to article

Authors and Affiliations

Young-Chul Shin
1
ORCID: ORCID
Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Molding & Metal Forming R&D Department, 156 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In hot forging process, tool life is an important factor which influences the economy of production. Wear mechanisms in these processes are dependent on each other, so modeling of them is a difficult problem. The present research is focused on development of a hybrid tool wear model for hot forging processes and evaluation of adding adhesive mechanism component to this model. Although adhesive wear is dominant in cases, in which sliding distances are large, there is a group of hot forging processes, in which adhesion is an important factor in specific tool parts. In the paper, a proposed hybrid tool wear model has been described and various adhesive wear models have been reviewed. The feasible model has been chosen, adapted and implemented. It has been shown that adding adhesive wear model increases predictive capabilities of the global hybrid tool wear model as far as characteristic hot forging processes is considered.

Go to article

Authors and Affiliations

M. Wilkus
Ł. Rauch
D. Szeliga
M. Pietrzyk
Download PDF Download RIS Download Bibtex

Abstract

In the paper presents two new patented of unconventional methods author’s and sleeve-type products of extruding [PL219182, PL221425]. The extrusion methods have been developed with the aim of reducing the energy and force parameters during the plastic forming of material. Traditional methods of extruding similar products are characterized by considerably higher extrusion force magnitudes. This results in substantial limitations and problems of an engineering nature. Moreover, the proposed methods of producing bottomed and bottomless sleeves are distinguished by the capability to minimize or totally eliminate the waste. The author’s methods of extruding long bottomless sleeves, presented herein, were used for developing a method for shaping inner toothing in spline sleeves. The theoretical analysis is based on thermomechanical simulation of the possibility of applying such processes to the extrusion of spline shafts with inner toothing. Next, the obtained results were compared with analogous parameters for classical indirect extrusion. The possibility of shaping inner toothing over the entire product length according to the proposed spline sleeve plastic forming methods was also explored.

Go to article

Authors and Affiliations

J. Michalczyk
S. Wiewiórowska
Download PDF Download RIS Download Bibtex

Abstract

Production processes of hot forging most often look similar [1-3]. Forging in several operations, usually in three or four. Most often the first operation is upsetting or flattening (sometimes rolling). The last operation is finishing forging. This applies to the production of steel forgings for the automotive, agricultural and other similar industries. Typical production proceeds as follows: the forgings are cleaned (shot-blasted) and then heat treatment is performed. It can be normalization, hardening and tempering, etc. After the heat treatment, forgings are checked and subjected to strength and microscopic tests, hardness tests, impact tests. The type of tests depends on the recipient. The process described in the work takes place in three operations. The heat treatment used so far is hardening and tempering. An attempt was made to change the heat treatment technology for a selected product made of 42CrMo4 steel (1.7225) (4140). An isothermal annealing test was carried out at different temperatures and for different times. The possibility of using heat from the forging process in heat treatment processes for the described product has been confirmed.

Go to article

Authors and Affiliations

M. Zwierzchowski
Download PDF Download RIS Download Bibtex

Abstract

Traditional press and sinter processes have gained in the last decades more and more importance in the manufacturing of high volume and precise mechanical components especially in the field of iron based powders. In recent years, the reductions of processing times and temperatures were spotted as critical targets to increase productivity and reduce energy consumption. Electric current assisted sintering (ECAS) technologies have always been seen as an alternative to traditional furnace based sintering techniques and have been the target of different researches with the specific purpose of reducing both operational times and costs. The aim of the present study is to investigate the effect of an innovative process called Electro Sinter Forging (ESF) applied to CuSn15 powders. Thanks to a very short processing time (less than 1 second to densify loose powders), this process is able to retain a very small grain size, thus enhancing mechanical properties of the processed materials. Furthermore, to the authors knowledge, cold – rolled electro – sinter – forged alloys has never been investigated before. First of all, bars were electro – sinter – forged and subsequently characterized in the as sinter – forged condition. The observation of microstructure evidenced an extremely fine microstructure and a reduced degree of porosity. Afterwards, bars were cold rolled after different reduction ratios; macrostructural integrity of the rolled bars was assessed before evaluating the effects of cold rolling on the sinter – forged microstructure.

Go to article

Authors and Affiliations

F.S. Gobber
J. Bidulská
ORCID: ORCID
A. Fais
F. Franchini
R. Bidulský
ORCID: ORCID
T. Kvačkaj
M. Actis Grande
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Wear of the working surfaces of the forging dies in the process of manufacturing products with the die forging technique leads to deterioration of their operational properties as well as their technological quality. A characteristic feature of production in small and medium-sized enterprises is the high variability of the product range and short production series, which can be repeated in the case of re-orders by customers. In this type of production conditions, a technological criterion in form of – a change in the characteristic and selected dimension of forging is usually used to assess the quality of products. An important problem is, whether by taking up another order for a series of the same type of product, it will be possible to implement it with the existing die, or should a new die be made? As a result of the research carried out in the company implementing this type of contract, a procedure was proposed for forecasting the abrasive wear of die working surfaces on the basis of a technological criterion, easy to determine in the conditions of small and medium-sized enterprises. The paper presents the results of the wear assessment of a die made out of hot-work tool steel X37CrMoV5-1 (WCL) and dies made of 42CrMo4 alloy structural steel with hardfacing working surfaces by F-818 wire. To determine and forecast the process of die wear, a mathematical model in the form of neural networks was used. Their task was to forecast the ratio of the increment in introduced wear intensity indicator to the number of forgings made during the process. Taking into account
Go to article

Authors and Affiliations

Joanna Krajewska-Spiewak
1
ORCID: ORCID
Jan Turek
2
Józef Gawlik
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Mechanical Engineering, Poland
  2. Jasło, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Marciniak
Download PDF Download RIS Download Bibtex

Abstract

Pre-alloyed Astaloy CrLTM (Fe-1.5 wt% Cr-0.2 wt% Mo), a commercial Fe-based alloy powder for high strength powder metallurgy products, was sintered and hot forged with additions of 0.5 wt% C and 0~2 wt% Cu. To investigate the influence of various Cu contents, the microstructural evolution was characterized using density measurements, scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Transverse rupture strength (TRS) was measured for each composition and processing stage. The correlation between Cu additions and properties of sinter-forged Fe-Cr-Mo-C alloy was discussed in detail.

Go to article

Authors and Affiliations

Min Chul Oh
Moontae Kim
Jisung Lee
Byungmin Ahn

This page uses 'cookies'. Learn more