Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Results of a research study into the velocity field in combustion chamber of internal combustion engine are presented in the paper. Measurements of fresh charge flow velocity in the cylinder axis and near the cylinder squeezing surface were performed. The hot-wire anemometer was used. The measurement results were used for analysis of turbulence field in the examined combustion chamber. It turned out that in the axis of cylinder the maximum of velocity occurs 30 deg before TDC and achieves 6 m/s. In the studied combustion chamber, the maximum value of turbulence intensity was close to 0.2 and it was achieved 35 deg BTDC. Additionally, the maximal velocity dispersion in the following cycles of the researched engine was at the level of 2 m/s, which is 35% of the maximum value of flow velocity. At a point located near the squeezing surface of the piston, a similar level of turbulence, but a the smaller value of the average velocity was achieved. The turbulence field turned out to be inhomogeneous in the combustion chamber.

Go to article

Authors and Affiliations

Wojciech Tutak
Arkadiusz Jamrozik
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to demonstrate the feasibility of using a Computational Fluid Dynamics tool for the design of a novel Proton Exchange Membrane Fuel Cell and to investigate the performance of serpentine micro-channel flow fields. A three-dimensional steady state model consisting of momentum, heat, species and charge conservation equations in combination with electrochemical equations has been developed. The design of the PEMFC involved electrolyte membrane, anode and cathode catalyst layers, anode and cathode gas diffusion layers, two collectors and serpentine micro-channels of air and fuel. The distributions of mass fraction, temperature, pressure drop and gas flows through the PEMFC were studied. The current density was predicted in a wide scope of voltage. The current density – voltage curve and power characteristic of the analysed PEMFC design were obtained. A validation study showed that the developed model was able to assess the PEMFC performance.
Go to article

Authors and Affiliations

Tomasz Zinko
Paulina Pianko-Oprych
Zdzisław Jaworski

This page uses 'cookies'. Learn more