Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the process of identifying discrete-continuous models with the use of heuristic algorithms. A stepped cantilever beam was used as an example of a discrete-continuous model. The theoretical model was developed based on the formalism of Lagrange multipliers and the Timoshenko theory. Based on experimental research, the theoretical model was validated and the optimization problem was formulated. Optimizations were made for two algorithms: genetic (GA) and particle swarm (PSO). The minimization of the relative error of the obtained experimental and numerical results was used as the objective function. The performed process of identifying the theoretical model can be used to determine the eigenfrequencies of models without the need to conduct experimental tests. The presented methodology regarding the parameter identification of the beams with the variable cross-sectional area (according to the Timosheno theory) with additional discrete components allows us to solve similar problems without the need to exit complex patterns.
Go to article

Bibliography

  1.  D. Cekus, B. Posiadała, and P. Warys, “Integration of modeling in SolidWorks and Matlab/Simulink environments,” Arch. Mech. Eng., vol. 61, no. 1, pp. 57–74, 2014, doi: 10.2478/meceng-2014-0003.
  2.  K. Kuliński and J. Przybylski, “Stability and vibrations control of a stepped beam using piezoelectric actuation,” MATEC Web Conf., vol. 157, p. 08004, 2018, doi: 10.1051/matecconf/201815708004.
  3.  S.A. Moezi, E. Zakeri, A. Zare, and M. Nedaei, “On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler–Bernoulli beam,” Comput. Struct., vol. 157, pp. 42–50, 2015, doi: 10.1016/j.compstruc.2015.05.008.
  4.  P.K. Jena and D.R. Parhi, “A modified particle swarm optimization technique for crack detection in cantilever beams,” Arabian J. Sci Eng., vol. 40, no. 11, pp. 3263–3272, 2015, doi: 10.1007/s13369-015-1661-6.
  5.  X.-L. Li, R. Serra, and O. Julien, “Effects of the Particle Swarm Optimization parameters for structural dynamic monitoring of cantilever beam,” in Surveillance, Vishno and AVE conferences. Lyon, France: INSA-Lyon, Université de Lyon, 2019. Available: https://hal.archives-ouvertes. fr/hal-02188562.
  6.  S. Das, S. Mondal, and S. Guchhait, “Particle swarm optimization-based characterization technique of nonproportional viscous damping parameter of a cantilever beam,” J. Vib. Control, p. 107754632110105, 2021, doi: 10.1177/10775463211010526.
  7.  J. Zolfaghari, “Optimization of dynamic response of cantilever beam by genetic algorithm,” in Nonlinear Approaches in Engineering Applications. Springer International Publishing, 2019, pp. 403–448, doi: 10.1007/978-3-030-18963-1_10.
  8.  M.A. Wahab, I. Belaidi, T. Khatir, A. Hamrani, Y.-L. Zhou, and M.A. Wahab, “Multiple damage detection in composite beams using particle swarm optimization and genetic algorithm,” Mechanics, vol. 23, no. 4, 2017, doi: 10.5755/j01.mech.23.4.15254.
  9.  Z. Xia, K. Mao, S. Wei, X. Wang, Y. Fang, and S. Yang, “Application of genetic algorithm-support vector regression model to predict damping of cantilever beam with particle damper,” J. Low Freq. Noise Vibr. Act. Control, vol. 36, no. 2, pp. 138–147, 2017, doi: 10.1177/0263092317711987.
  10.  M. Friswell and J. Mottershead, Finite Element Model Updating in Structural Dynamics, Springer, Dordrecht, 1995.
  11.  S. Garus and W. Sochacki, “Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm,” Wave Motion, vol. 98, p. 102645, 2020, doi: 10.1016/j.wavemoti.2020.102645.
  12.  S. Mirjalili, “Genetic algorithm,” in Studies in Computational Intelligence. Springer, Cham, 2018, pp. 43–55, doi: 10.1007/978-3-319-93025-1_4.
  13.  W. Sochacki, J. Garus, J. Szmidla, M. Nabiałek, K. Błoch, P. Kwiatoń, B. Jeż, K. Jeż, and S. Garus, “Designing two-band mechanical wave filters using genetic algorithm,” Acta Phys. Pol. A, vol. 139, no. 5, pp. 479–482, May 2021, doi: 10.12693/aphyspola.139.479.
  14.  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 – International Conference on Neural Networks. IEEE, 1995, doi: 10.1109/icnn.1995.488968.
  15.  D. Skrobek and D. Cekus, “Optimization of the operation of the anthropomorphic manipulator in a three-dimensional working space,” Eng. Optim., vol. 51, no. 11, pp. 1997–2010, 2019, doi: 10.1080/0305215x.2018.1564919.
  16.  P. Dziwiński, Ł. Bartczuk, and J. Paszkowski, “A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm,” J. Artif. Intell. Soft Comput. Res., vol. 10, no. 2, pp. 95– 111, Mar. 2020, doi: 10.2478/jaiscr-2020-0007.
  17.  S. Timoshenko, “On the transverse vibrations of bars of uniform cross section,” Philos. Mag., vol. 43, no. 253, pp. 125–131, Jan. 1922, doi: 10.1080/14786442208633855.
  18.  W. Sochacki, “The dynamic stability of a stepped cantilever beam with attachments,” J. Vibroeng., vol. 15, no. 1, pp. 280– 290, 2013.
  19.  M.H. Korayem and A. Nahavandi, “Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering- shaped geometry and double piezoelectric extended layers in the air and liquid environments,” J. Sound Vib., vol. 386, pp. 251–264, 2017, doi: 10.1016/j.jsv.2016. 08.031.
  20.  B. Posiadała, “Use of lagrange multiplier formalism to analyze free vibrations of combined dynamical systems,” J. Sound Vib., vol. 176, no. 4, pp. 563–572, Sep. 1994, doi: 10.1006/jsvi.1994.1396.
  21.  R. Pytlarz, “Experimental modal analysis of the beam with the help of non-contact vibration measurement method,” Master’s thesis, Czestochowa University of Technology, Częstochowa, 2008.
  22.  Z. Abo-Hammour, O.A. Arqub, O. Alsmadi, S. Momani, and A. Alsaedi, “An optimization algorithm for solving systems of singular boundary value problems,” Appl. Math. Inf. Sci., vol. 8, no. 6, pp. 2809–2821, 2014, doi: 10.12785/amis/080617.
  23.  I. Rejer, “Classic genetic algorithm vs. genetic algorithm with aggressive mutation for feature selection for a brain-computer interface,” Przegląd Elektrotechniczny, vol. 1, no. 2, pp. 100–104, 2015, doi: 10.15199/48.2015.02.24.
  24.  M. Nikoo, M. Hadzima-Nyarko, E.K. Nyarko, and M. Nikoo, “Determining the natural frequency of cantilever beams using ANN and heuristic search,” Appl. Artif. Intell, vol. 32, no. 3, pp. 309–334, Mar. 2018, doi: 10.1080/08839514.2018.1448003.
  25.  A. Mayer, “A genetic algorithm with randomly shifted gray codes and local optimizations based on quadratic approximations of the fitness,” in Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, 2017, doi: 10.1145/3067695.3075968.
  26.  B. Ufnalski and L. Grzesiak, “Particle swarm optimization of artificial-neural-network-based on-line trained speed controller for battery electric vehicle,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 661–667, 2012, doi: 10.2478/v10175-0120059-9.
  27.  M. Szczepanik and T. Burczyński, “Swarm optimization of stiffeners locations in 2-d structures,” Bull. Pol. Acad. Sci. Tech. Sci.,, vol. 60, no. 2, pp. 241–246, 2012, doi: 10.2478/v10175012-0032-7.
  28.  J.C. Bansal, “Particle swarm optimization,” in Studies in Computational Intelligence. Springer, Cham, 2018, pp. 11–23, doi: 10.1007/978-3- 319-91341-4_2.
  29.  D. Cekus and P. Warys, “Identification of parameters of discretecontinuous models,” in AIP Conference Proceedings. AIP Publishing LLC, 2015, doi: 10.1063/1.4913110.
  30.  D. Cekus and D. Skrobek, “The influence of inertia weight on the particle swarm optimization algorithm,” J. Appl. Math. Comput. Mech., vol. 17, no. 4, pp. 5–11, Dec. 2018, doi: 10.17512/jamcm.2018.4.01.
  31.  A.R. Jordehi and J. Jasni, “Parameter selection in particle swarm optimisation: a survey,” J. Exp. Theor. Artif. Intell., vol. 25, no. 4, pp. 527–542, Dec. 2013, doi: 10.1080/0952813x.2013.782348.
Go to article

Authors and Affiliations

Dawid Cekus
1
ORCID: ORCID
Paweł Kwiatoń
1
ORCID: ORCID
Michal Šofer
2
ORCID: ORCID
Pavel Šofer
3
ORCID: ORCID

  1. Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-201 Częstochowa, Poland
  2. Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
  3. Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The article introduces a method for selecting the best clamping conditions to obtain vibration reduction during the milling of large-size workpieces. It is based on experimental modal analysis performed for a set of assumed, fixing conditions of a considered workpiece to identify frequency response functions (FRFs) for each tightening torque of the mounting screws. Simulated plots of periodically changing nominal cutting forces are then calculated. Subsequently, by multiplying FRF and spectra of cutting forces, a clamping selection function (CSF) is determined, and, thanks to this function, vibration root mean square (RMS) is calculated resulting in the clamping selection indicator (CSI) that indicates the best clamping of the workpiece. The effectiveness of the method was evidenced by assessing the RMS value of the vibration level observed in the time domain during the real-time face milling process of a large-sized exemplary item. The proposed approach may be useful for seeking the best conditions for fixing the workpiece on the table.
Go to article

Authors and Affiliations

Krzysztof J. Kaliński
1
ORCID: ORCID
Marek A. Galewski
1
ORCID: ORCID
Natalia Stawicka-Morawska
1
ORCID: ORCID
Krzysztof Jemielniak
2
ORCID: ORCID
Michał R. Mazur
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design,Gdansk, 80-233, Poland
  2. Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Institute of Manufacturing Processes,Warsaw, 00-661, Poland
Download PDF Download RIS Download Bibtex

Abstract

Paintings inevitably bear severe mechanical loads during transportation.Understanding the dynamic characteristics of paintings helps to avoid damage during transportation and to effectively slow down their aging.In this contribution, the vibration characteristics of canvas and primed canvas of paintings and their influencing factors are studied experimentally.For this reason, two dummy paintings with canvas in a common orientation and a tilted orientation are investigated, and an experimental setup using an excitation mechanism and a laser Doppler vibrometer is developed.In order to avoid changes of the modal parameters related to humidity or temperature, all experiments were conducted in a climate box.The modal parameters of dummy paintings are identified by means of experimental modal analysis.Also, the difference in modal properties of the two dummy paintings before and after applying the primer are compared.The identified modal parameters are used to reconstruct their eigenmodes.From the identified modal parameters a numerical model is derived, which is then compared to measurements.The comparison shows a good agreement, hence is a hint for the correctness of assuming a modal structure and the quality of the modal parameter identification.Lastly, with the help of the climate box, the influences of humidity and temperature on the eigenfrequencies of dummy paintings are studied.
Go to article

Bibliography

[1] M.F. Mecklenburg. Art in transit: Studies in the transport of paintings. In Proceedings of International Conference on the Packing and Transportation of Paintings, London, 1991.
[2] E. Tsiranidou, E. Bernikola, V. Tornari, T. Fankhauser, M. Läuchli, C. Palmbach, and N. Bäschlin. Holographic monitoring of transportation effects on canvas paintings. SPIE Newsroom, pages 1–3, 2011. doi: 10.1117/2.1201106.003767 .
[3] N. Hein. Die materielle Veränderung von Kunst durch Transporte–Monitoring und Transportschadensbewertung an Gemälden durch das Streifenprojektionsverfahren. Ph.D. Thesis, Staatliche Akademie der Bildenden Künste Stuttgart, Stuttgart, 2015. (in German).
[4] C. Krekel and N. Hein. Kunsttransport: Gibt es eine Grenze zwischen Schaden und beschleunigter Alterung? In Proceedings of ICOM International Council of Museums, Köln, volume 4, pages 12–17, 2014.
[5] C. Krekel and Heinemann C. Wenn Kunstwerke auf Reisen gehen: Mikroschäden mithilfe hochauflösender 3D-Modelle finden und dokumentieren. Das Magazin der Deutschen Forschungsgemeinschaft, 4:12–17, 2020. (in German).
[6] K. Kracht. Die Untersuchung des Schwingungsverhaltens von Ölgemälden in Abhängigkeit der Alterung. Ph.D. Thesis, Technische Universität, Berlin, 2011. (in German).
[7] A. Gmach. Erschütternde Umstände – Schwingungsbelastung von Kunst- und Bauwerken. M.Sc. Thesis, Technische Universität München, 2010. (in German).
[8] M. Läuchli, N. Bäschlin, A. Hoess, T. Fankhauser, C. Palmbach, and M. Ryser. Packing systems for paintings: Damping capacity in relation to transport-induced shock and vibration. In Proceedings of ICOM-CC 17th Trienniel Conference, Melbourne, pages 1–9, 15–19 Sep. 2014.
[9] K. Kracht and T. Kletschkowski. From art to engineering: a technical review on the problem of vibrating canvas part i: excitation and efforts of vibration reduction. Facta Universitatis, Series: Mechanical Engineering, 15(1):163–182, 2017. doi: /10.22190/FUME161010009K .
[10] C. Palmbach. Messung transportbedingter Schwingungen an textilen Bildträgern. M.Sc. Thesis, 2007. (in German).
[11] C. Heinemann, P. Ziegler, N. Hein, C. Krekel, and P. Eberhard. Objektiviertes Gemäldetransportmonitoring unter Berücksichtigung mechanischer Einflussfaktoren. Zeitschrift für Kunsttechnologie und Konservierung, 33(1):178–198, 2019. (in German).
[12] P.G. Chiriboga Arroyo. Finite Element Modeling of Vibrations in Canvas Paintings. Ph.D. Thesis, Delft University of Technology, Delft, 2013.
[13] S. Michalski. Paintings: Their response to temperature, relative humidity, shock, and vibration. Art in Transit: Studies in the Transport of Paintings, pages 223–248, 1991.
[14] M.F. Mecklenburg. Some aspects of the mechanical behavior of fabric supported paintings. Smithsonian Institution, 1982.
[15] E.W. Hagan, M.N. Charalambides, C.T. Young, T.J. Learner, and S. Hackney. Tensile properties of latex paint films with TiO2 pigment. Mechanics of Time-Dependent Materials, 13(2):149–161, 2009. doi: 10.1007/s11043-009-9076-y .
[16] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 10 edition, 2009.
[17] D.J. Ewins. Modal Testing: theory, practice and application. John Wiley & Sons, 2009.
[18] R.J. Allemang and D.L. Brown. A complete review of the complex mode indicator function (CMIF) with applications. In Proceedings of ISMA International Conference on Noise and Vibration Engineering, Katholieke Universiteit Leuven, Belgium, pages 3209–3246, 2006.
[19] N.R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 3 edition, 1998.
Go to article

Authors and Affiliations

Yulong Gao
ORCID: ORCID
Pascal Ziegler
ORCID: ORCID
Carolin Heinemann
ORCID: ORCID
Eva Hartlieb
ORCID: ORCID
Peter Eberhard
ORCID: ORCID

This page uses 'cookies'. Learn more