Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Surface Acoustic Wave (SAW) devices like delay lines, filters, resonators etc., are nowadays extensively used as principal solid state components in many electronic applications and chemical vapour sensors. To bring out the best from these SAW devices, computational design and modelling are resorted too. The present paper proposes the modelling of 400 MHz ST-X Quartz based SAW delay line, by three models namely, Impulse Response Model (IRM), Crossed-field Equivalent Circuit Model (ECM) and Couplingof- Modes (COM) model. MATLABr is employed as a computational tool to model the experimental output of the SAW device. A comparative discussion of the modelled device results is also provided.
Go to article

Authors and Affiliations

Thirumal Venkatesan
Haresh M. Pandya
Raju Banupriya
Gandhi Pandiyarajan
Download PDF Download RIS Download Bibtex

Abstract

A contactless energy transmission system is essential to supply onboard systems of electromagnetically levitated vehicles without physical contact to the guide rail. One of the possibilities to realise a contactless power supply (CPS) is by integrating the primary actuator into the guide rail of an electromagnetic guiding system (MGS). The secondary actuator is mounted on the elevator car. During the energy transmission, load dependent non-linear losses occur in the guide rail. The additional losses, which are caused by the leakage flux penetrating into the guide rail, cannot be modelled using the classical approach of iron losses in the equivalent circuit of a transformer, which is a constant parallel resistance to the mutual inductance. This paper introduces an approach for modelling the load dependent non-linear losses occurring in the guide rail using additional variable discrete circuit elements.

Go to article

Authors and Affiliations

Aryanti Kusuma Putri
Rüdiger Appunn
Kay Hameyer

This page uses 'cookies'. Learn more