Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The velocity field around the standard Rushton turbine was investigated by the Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) measurements. The mean ensembleaveraged velocity profiles and root mean square values of fluctuations were evaluated at two different regions. The first one was in the discharge stream in the radial direction from the impeller where the radial flow is dominant and it is commonly modelled as a swirling turbulent jet. The validity range of the turbulent jet model was studied. The second evaluated region is under the impeller where flow seems to be at first sight rather rigorous but obtained results show nonnegligible values of fluctuation velocity.

Go to article

Authors and Affiliations

Bohuš Kysela
Jiří Konfršt
Ivan Fořt
Michal Kotek
Zdeněk Chára
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical analysis of an agitated fully baffled cylindrical vessel with a down pumping four blade worn or unworn pitched blade impeller (α = 45° and 30°) under a turbulent flow regime. CFD simulations predict the pumping capacity of the system equipped by worn and unworn pitched blade impeller. Experimental data were taken from the authors’ previous work and compared with results of numerical computations. A good agreement with experimental data was obtained. The ensemble-average mean velocity field with worn and unworn impellers was computed. It follows from the simulation results that the wear rate of the impeller blade has a significantly negative effect on the velocity distribution in an agitated liquid. The greater the destruction of the worn blade, the higher is the deformation of the velocity field around the rotating impeller, with a simultaneous decrease in impeller pumping capacity.

Go to article

Authors and Affiliations

Jan Skočilas
Ivan Fořt
Tomáš Jirout

This page uses 'cookies'. Learn more