Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Is this article simulation of statistical measurements is performed on the basis of which the analysis of the standard deviation of the obtained results is carried out. It is shown that the standard deviation is minimum and independent from measurement duration while an object is in the state of equilibrium. For objects in a stationary non-equilibrium state the standard deviation depends on the duration measurements and the parameters of the state. The influence of these factors on the standard deviation is assessed with equation which includes the relaxation time. The value of the relaxation time is determined by approximating the energy spectrum of the studied signals. The analysis of energy spectra showed that the spectrum of white noise is inherent in objects in equilibrium; the flicker component of the spectrum occurs when the state of the object deviates from equilibrium.
Go to article

Authors and Affiliations

Krzysztof Przystupa
1
Zenoviy Kolodiy
2
Svyatoslav Yatsyshyn
2
Jacek Majewski
3
Yuriy Khoma
2
Iryna Petrovska
2
Serhiy Lasarenko
2
Taras Hut
2

  1. Department Automation, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Lviv Polytechnic National University, Institute of Computer Technologies, Automatics and Metrology, S. Bandera Str. 28a, 79013, Lviv, Ukraine
  3. Department of Automation and Metrology, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The scaling of turbulence characteristics such as turbulent fluctuation velocity, turbulent kinetic energy and turbulent energy dissipation rate was investigated in a mechanically agitated vessel 300 mm in inner diameter stirred by a Rushton turbine at high Reynolds numbers in the range 50 000 < Re < 100 000. The hydrodynamics and flow field was measured using 2-D TR PIV. The convective velocity formulas proposed by Antonia et al. (1980) and Van Doorn (1981) were tested. The turbulent energy dissipation rate estimated independently in both radial and axial directions using the one-dimensional approach was not found to be the same in each direction. Using the proposed correction, the values in both directions were found to be close to each other. The relation ε/(N3·D2) ∞ const. was not conclusively confirmed.

Go to article

Authors and Affiliations

Radek Šulc
Vít Pešava
Pavel Ditl

This page uses 'cookies'. Learn more