Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ-sphere) and the standard spheroid (namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quartermeridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square) error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the deformation parameter of the λ-sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed main geometric characteristics of λ-sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out that the value of the,sup> flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of the λ-sphere (the relative error is of the order of 10−4).
Go to article

Authors and Affiliations

Vasyl Kovalchuk
1
ORCID: ORCID
Ivaïlo M. Mladenov
2 3
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
  2. Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria
  3. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

This page uses 'cookies'. Learn more