Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present work concerns analysis of the possibilities of synthesis of Ni-TiO2 composite coatings from electrolytes containing formate nickel complexes. A magnetic field was applied as an additional factor enabling modification of properties of the synthesized coatings through its influence on electrode processes. The presented data describes the effect of electrode potential, TiO2 concentration in the electrolyte as well as the value of the magnetic field induction vector on the deposition rate, composition, current efficiency, structure, surface states and morphology of synthesized coatings. The studies were preceded by thermodynamic analysis of the electrolyte. The obtained results indicated possibilities of synthesis of composites containing up to 0.97 wt. % of TiO2. Depending on applied electrolysis conditions current efficiency amounted to from 61.2 to 75.1%.

Go to article

Authors and Affiliations

K. Mech
Download PDF Download RIS Download Bibtex

Abstract

In this work the conical Ni structures were obtained from an electrolyte containing NH4Cl as a crystal modifier. This process is called one-step method and allows to cover large areas with micro- and nanostructures during a single electrodeposition. Presence of NH4Cl promotes a vertical direction of structure growth in order to block a horizontal one. Additionally, this method does not require using chromic acid solution, which is dangerous for the environment. Due to the ferromagnetic properties of Ni, obtained coatings could be applied as magnetic devices. The influence of the parameters such as a preparation of copper substrate, a composition of electrolyte and electrodeposition conditions (time, the electrolyte temperature and current density) was investigated in this work.
Go to article

Bibliography

[1] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36, 307-326 (2010). DOI: https://doi.org/10.1016/j.pecs.2009.11.002
[2] L . Huang, M. Wei, S. Zaman, A. Ali, B.Y. Xia, Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting, Chem. Eng. J. 398, 125669 (2020). DOI: https://doi.org/10.1016/j.cej.2020.125669
[3] Z . He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater. 13, 1764-1770 (2004). DOI: https://doi.org/10.1016/j.diamond.2004.03.004
[4] M.N. Krstajić Pajić, S.I. Stevanović, V. V. Radmilović, A. Gavrilović- Wohlmuther, P. Zabinski, N.R. Elezović, V.R. Radmilović, S.L. Gojković, V.M. Jovanović, Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method, Appl. Catal. B Environ. 243, 585-593 (2019). DOI: https://doi.org/10.1016/j.apcatb.2018.10.064
[5] D. Kutyła, K. Kołczyk-Siedlecka, A. Kwiecińska, K. Skibińska, R. Kowalik, P. Żabiński, Preparation and characterization of electrodeposited Ni-Ru alloys: morphological and catalytic study, J. Solid State Electrochem. 23, 3089-3097 (2019). DOI: https://doi.org/10.1007/s10008-019-04374-7
[6] M . Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8, 23-39 (2015). DOI: https://doi.org/10.1007/s12274-014-0591-z
[7] V .D. Jović, B.M. Jović, U. Lačnjevac, N.V. Krstajić, P. Zabinski, N.R. Elezović, Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions, J. Electroanal. Chem. 819, 16-25 (2018). DOI: https://doi.org/10.1016/j.jelechem.2017.06.011
[8] P.R. Zabinski, S. Meguro, K. Asami, K. Hashimoto, Electrodeposited Co-Ni-Fe-C alloys for hydrogen evolution in a hot 8 kmol·m-3 NaOH, Mater. Trans. 47, 2860-2866 (2006). DOI: https://doi.org/10.2320/matertrans.47.2860
[9] L. Sun, P.C. Searson, C.L. Chien, Magnetic anisotropy in prismatic nickel nanowires, Appl. Phys. Lett. 79, 4429-4431 (2001). DOI: https://doi.org/10.1063/1.1428113
[10] F. Tian, A. Hu, M. Li, D. Mao, Superhydrophobic nickel films fabricated by electro and electroless deposition, Appl. Surf. Sci. 258, 3643-3646 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.11.130
[11] Z . Chen, F. Tian, A. Hu, M. Li, A facile process for preparing superhydrophobic nickel films with stearic acid, Surf. Coatings Technol. 231, 88-92 (2013). DOI: https://doi.org/10.1016/j.surfcoat.2012.01.053
[12] S. Rahimi, S. Shahrokhian, H. Hosseini, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, J. Electroanal. Chem. 810, 78-85 (2018). DOI: https://doi.org/10.1016/j.jelechem.2018.01.004
[13] T. Hang, M. Li, Q. Fei, D. Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19, 035201 (2008). DOI: https://doi.org/10.1088/0957-4484/19/03/035201
[14] T. Hang, A. Hu, H. Ling, M. Li, D. Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci. 256, 2400-2404 (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.10.074
[15] N . Wang, T. Hang, S. Shanmugam, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition, CrystEngComm. 16, 6937-6943 (2014). DOI: https://doi.org/10.1039/c4ce00565a
[16] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surf. Coatings Technol. 283, 318-328 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2015.11.008
Go to article

Authors and Affiliations

K. Skibińska
1
ORCID: ORCID
S. Semeniuk
1
D. Kutyła
1
ORCID: ORCID
K. Kołczyk-Siedlecka
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The report presents research efforts on the synthesis of Zn/MoS2 composite coatings by electrochemical reduction from a sulphate-borate bath containing MoS2 powder as a dispersion phase at various concentrations. The structure of the Zn/MoS2 composite coatings was characterised and the effect of MoS2 particles embedded on their microhardness was evaluated. The coatings produced are characterized by a compact, homogeneous structure and a good connection to a steel substrate. The incorporation of MoS2 particles into the zinc matrix has an influence on the structure and morphology of the Zn/MoS2 composite coatings. It was found that the presence of MoS2 particles increases surface roughness along with coating hardness. The incorporation of the MoS2 particles into the zinc matrix slightly improves the corrosion resistance compared to Zn coatings, making the corrosion potential shift towards more electropositive values.

Go to article

Authors and Affiliations

K. Szmigielska
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on nanocomposite nickel/graphene oxide (Ni / GO) coatings produced by electrochemical reduction method on a steel substrate. Discussed is the method of manufacturing composite coatings with nickel matrix and embedded graphene oxide flakes. For comparative purposes, the studies also included a nanocrystalline Ni coating without embedded graphene oxide flakes. Graphene oxide was characterized by Raman spectroscopy, infrared spectroscopy (FTIR) and transmission (TEM) and scanning (SEM) electron microscopy. Results of studies on the structure of nickel and composite Ni/GO coatings deposited in a bath containing different amount of graphene oxide are presented. The coatings were characterized by scanning electron microscopy, light microscopy, Raman spectroscopy and X-ray diffraction. The adhesion of the prepared coatings to the substrate was examined by the scratch method. The microhardness of the coatings was measured using the Vickers method on perpendicular cross-sections to the surface. Corrosion tests of the coatings were investigated using the potentiodynamic method. The influence of graphene oxide on the structure and properties of composite coatings deposited from baths with different content of graphene oxide was determined.

Go to article

Authors and Affiliations

G. Cieślak
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experiments on metallization of plastic elements produced using 3D printing technology from the light-hardened resins. The obtained coatings were bimetallic (Cu/Ni). The first step of metallization was the electroless deposition of copper. The second one was electrodeposition of nickel on the previously prepared copper substrate. The parameters of 3D prints preparation and metallization processes were deeply investigated. The etching of plastics substrates and duration of electroless metallization of 3D prints by copper were analyzed. In the next step the influence of nickel electrodeposition time was investigated. The coating were analyzed by XRD method and morphology of surface was analyzed by scanning electron microscopy (SEM). The thickness of coatings was calculated based on mass differences and measured by using optical microscopy method. The optimal parameters for both processes were specified.
Go to article

Authors and Affiliations

R. Kowalik
D. Kutyła
A. Kwiecińska
P. Żabiński
K. Kołczyk
W. Zborowski
Download PDF Download RIS Download Bibtex

Abstract

The effect of cationic, anionic and nonionic surface active additives, organic compounds and polymers on the electrodeposition of Zn-Mo coatings on steel substrate and detailed characterization in chosen optimal conditions was studied. The influence of polyethylene glycol (PEG) various concentration, sodium dodecyl sulphate (SDS), triton X-100, d-sorbitol, cetyl trimethyl ammonium bromide (CTAB), thiourea and disodium ethylenediaminetetraacetate (EDTA) on the electrodeposition process was examined. The composition of deposits was defined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Results has shown that the current efficiency of the electrodeposition of Zn-Mo coatings is 71.4%, 70.7%, 66.7% for 1.5 g/dm3 PEG 20000, 0.1 g/dm3 Triton X-100 and 0.75 M D-sorbitol respectively. The surface topography and roughness of selected coatings on steel was investigated by atomic force microscopy (AFM). The attendance of D-sorbitol of 0.75 M in the solution cause clear reduction of grain size and the value of roughness parameter (Ra) in relation to SDS, PEG, Triton X-100 and the sample prepared without the additives. The morphology of electrodeposited layers was studied by scanning electron microscopy (SEM). The addition of selected additives to the electrolytic bath results in the formation of smoother, brighter and more compact Zn-Mo coatings in comparison to layers obtained from similar electrolytes but without the addition of surfactants. The optimal concentration of the most effective additives such as PEG 20000, Triton X-100 and D-sorbitol is 1.5 g/dm3, 0.1 g/dm3, 0.75 M respectively.

Go to article

Authors and Affiliations

A. Hara
H. Kazimierczak
A. Bigos
Z. Świątek
P. Ozga
Download PDF Download RIS Download Bibtex

Abstract

This work presents the studies on the electrochemical process of thin palladium layers formation onto electrodeposited cobalt coatings. The suggested methodology consists of the preparation of thick and smooth cobalt substrate via galvanostatic electrodeposition. Cobalt coatings were prepared under different cathodic current density conditions from acidic bath containing cobalt sulphate and addition of boric acid. Obtained cobalt layers were analyzed by x-ray diffraction to determine their phase composition. Freshly prepared cobalt coatings were modificated by the galvanic displacement method in PdCl2 solution, to obtain smooth and compact Pd layer. The comparison of electrocatalytic properties of Co coatings with Co/Pd ones enabled to determine the influence of Palladium presence in cathodic deposits on the hydrogen evolution process.

Go to article

Authors and Affiliations

K. Skibińska
D. Kutyła
K. Kołczyk
A. Kwiecińska
R. Kowalik
P. Żabiński
Download PDF Download RIS Download Bibtex

Abstract

In this study, molten salt electrorefining was used to recover indium metal from In-Sn crude metal sourced from indium tin oxide (ITO) scrap. The electrolyte used was a mixture of eutectic LiF-KF salt and InF3 initiator, melted and operated at 700°C. Voltammetric analysis was performed to optimize InF3 content in the electrolyte, and cyclic voltammetry (CV) was used to determine the redox potentials of In metal and the electrolyte. The optimum initiator concentration was 7 wt% of InF3, at which the diffusion coefficients were saturated. The reduction potential was controlled by applying constant current densities of 5, 10, and 15 mA/cm2 using chronopotentiometry (CP) techniques. In metal from the In-Sn crude melt was deposited on the cathode surface and was collected in an alumina crucible.

Go to article

Authors and Affiliations

Hyun-Gyu Lee
Sang-Hoon Choi
Jae-Jin Sim
Jae-Hong Lim
Soong-Keun Hyun
Jong-Hyeon Lee
Kyoung-Tae Park
ORCID: ORCID

This page uses 'cookies'. Learn more