Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Contemporary sensorless AC drives require the use of electromechanical quantities estimation. The skin effect occurring in AC machines with solid secondary or with solid secondary elements causes machines of this type to be represented by equivalent circuits containing distributed elements, which makes the analysis of machine electrodynamic states more complicated and hinders the construction of relatively simple and effective estimators of electromechanical quantities. The variability of rotor parameters is modelled, with a good approximation, by the machine secondary multi-loop equivalent circuit with lumped elements. In this paper the construction procedure of electromechanical state variable estimators basing on this type of equivalent circuit will be presented. The simulation investigations of the created electromechanical quantities estimators, performed for the selected states of solid iron rotor AC machine operation will be shown as well.

Go to article

Authors and Affiliations

A. Kaplon
G. Utrata
J. Rolek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of computing electrical and mechanical variables of BLDC motors. It takes into account electrical, magnetic and mechanical phenomena in the power supply-converter-BLDC motor-load machine system. The solution to the problem is the so-called circuit-field method. The results determined with the use of time stepping finite element method were used as the parameters of equations of the developed mathematical model. Losses in the motor, losses in transistors and diodes of the converter as well as the actual back EMF waveforms, variable moment of inertia and variable load torque are accounted for. The designed laboratory stand and the test results are presented in the paper. The experimental verification shows the correctness of the developed method, algorithm and program. The developed computational method is universal with respect to different electromechanical systems with cylindrical BLDC motors. It can be applied to electromechanical systems with BLDC motors operating at constant but also variable load torque and moment of inertia.
Go to article

Authors and Affiliations

Marek Ciurys
Ignacy Dudzikowski
Download PDF Download RIS Download Bibtex

Abstract

Accurate force and torque calculations are fundamental to being able to predict the operation of an electromechanical device or system. The Maxwell stress tensor and the virtual work principle are the two major theories for force and torque calculation. However, if local distributions of torque are needed to couple to structural and vibration analyses, the conventional Maxwell stress approach cannot provide this easily. A recently developed approach based on sensitivity analysis has the capability to deliver local stress and torque as well as accurate global results. In addition, this approach divides the total torque into different components which are essential to the design of electrical devices. This paper includes several numerical examples of torque calculations of different electrical machines. The results are verified by a commercial software package using the Maxwell stress based force calculation.

Go to article

Authors and Affiliations

M. Li
D. Lowther
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for the optimization of a Brushless Direct Current motor (BLDC). In particular it is focused on multiobjective optimization using a genetic algorithm (GA) developed in Matlab/Optimization Toolbox coupled with Maxwell from ANSYS. Optimization process was divided into two steps. The aim of the first one was to maximize the RMS torque value and to minimize the mass. The second part of the optimization process was to minimize the cogging torque by selecting proper magnet angle. The paper presents the methodology and capabilities of scripting methods rather than specific optimization results for the applied geometry.

Go to article

Authors and Affiliations

R. Caramia
R. Piotuch
R. Pałka
Download PDF Download RIS Download Bibtex

Abstract

An analysis of the influence of inverter PWM speed control methods on the operation of a brushless DC (BLDC) motor was carried out. Field-circuit models of the BLDC motor were developed taking into account rotational speed control by two classic methods: the unipolar H_ON_L_PWM and the bipolar H_PWM_L_PWM. Waveforms of the electrical and mechanical quantities and the motor parameters were computed. The results of the computations were verified by measurements performed on a specially designed test stand. On the basis of the measuredwaveforms of the electrical and mechanical quantities the dependence of the drive system efficiencies and power losses on rotational speed was determined for the two methods of inverter control.

Go to article

Authors and Affiliations

Marek Paweł Ciurys
Download PDF Download RIS Download Bibtex

Abstract

This document contains results of research on complex motion common magnetic circuit electromagnetic converter characteristic that allows making independent axial and rotary shaft motion. The converter in addition to linear-rotary mechanism consists of two drive rotors and one common magnetic circuit excitator. Such a solution allows to reduce volume of the machine and makes it easier to use. The paper cites design intent and possible structure of the device. Phenomenon of common magnetic circuit adverse effect on correct operation of device is discussed. The concept of using relative error as a way to evaluate the influence of that phenomenon in the torques is discussed. Waveforms of determined relative errors for all possible cases is presented. Furthermore the concept of average relative error is defined and its use as a quantitative method of assessing the degree of common circuit impact is indicated. Definition of relative error ripple factor is given, and its usage is shown. Winding inductance calculation based on free FEM application is shown and its influence on control strategy and power system.

Go to article

Authors and Affiliations

Grzegorz Kamiński
Paweł Góralski
Download PDF Download RIS Download Bibtex

Abstract

Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.
Go to article

Authors and Affiliations

Simon Steentjes
Georg Von Pfingsten
Andreas Ruf
Marco Hombitzer
David Franck
Kay Hameyer Rwth
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of diagnostic measurements of partial discharge signal propagation from the winding insulation in electrical machinery, which were performed using an on-line method. This paper describes the results of experiments and the acquired experience in the monitoring of winding insulation in high power and high voltage electrical machines which are important in industrial production processes. The authors show the measurement techniques employed in their research. Representative measurement results are presented along with their analysis. The authors use an SKF monitoring systems to measure: vibrations, temperature, and humidity, as major factors affecting partial discharge activity in the from winding insulation of electrical machines.

Go to article

Authors and Affiliations

Zbigniew Plutecki
Sławomir Szymaniec
Download PDF Download RIS Download Bibtex

Abstract

To reduce the losses of the power electronic inverter, the voltage slew rate (d u/d t) of the electric motors supplying voltage is increasing. As steep voltage slopes excite high frequencies in the megahertz range, transient phenomena in the winding of the electrical machine occur. To design the insulation system, the maximum electric potential difference between the conducting elements must be predicted. General design rules can lead to a significant overengineering of the interturn insulation, particularly when considering smaller stators with a known wire distribution. Therefore, two different winding topologies are studied comparing the voltage distribution in a round-wire winding and a winding with preformed coils.
Go to article

Authors and Affiliations

Florian Pauli
1
Niklas Driendl
1
Sebastian Mönninghoff
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept of an innovative field-controlled axial-flux permanent-magnet (FCAFPM) machine. In order to show the working principle and features of the proposed dual-rotor with surface-mounted PM’s and iron poles, a toroidallywounded slotted single-stator FCAFPM machine is investigated and analyzed in detail, using 3-D FEAnalysis. The control range, back electromotive force (back-EMF), output and cogging torque components have been evaluated.

Go to article

Authors and Affiliations

Piotr Paplicki
Download PDF Download RIS Download Bibtex

Abstract

Production deviations have a remarkable effect on the radiated sound of electrical machines, introducing additional signal components besides the fundamental field waves which significantly change and enrich the subjectively perceived sound characteristic. In literature these harmonics are mainly traced back to dynamic eccentricity, which modulates the fundamental fieldwaves. In this paper a thorough mechanic and electromagnetic analysis of a modern, well-constructed traction drive (permanent magnet synchronous machine) is performed to showthat for this typical rotor configuration dynamic eccentricity is negligible. Instead, deviations in the rotor magnetization are shown to be the dominant cause for vibration harmonics.
Go to article

Bibliography

[1] Nahlaoui M.A., Steins H., Kulig S., Exnowski S., Comparison of numerically determined noise of a 290 kW induction motor using FEM and measured acoustic radiation, Archives of Electrical Engineering, vol. 62, pp. 195–207 (2013), DOI: 10.2478/aee-2013-0015.
[2] Gieras J.F., Wang C., Cho Lai J., Noise of polyphase electric motors, CRC Press Taylor and Francis Group (2006).
[3] Hu Y., Wei H., Chen H., Sun W., Zhao S., Li L., Vibration Study of Permanent Magnet Synchronous Motor Base on Static Eccentricity Model, 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1–5 (2019), DOI: 10.1109/ICEMS.2019.8922162.
[4] LiY.,Wu H.,Xu X., CaiY., Sun X., Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity, Archives of Electrical Engineering, vol. 5, pp. 851–862 (2019), DOI: 10.24425/bpasts.2019.130882.
[5] Lundin U., Wolfbrandt A., Method for Modeling Time-Dependent Nonuniform Rotor/Stator Configurations in Electrical Machines, IEEE Transactions on Magnetics, vol. 45, iss. 7, pp. 2976–2980 (2009), DOI: 10.1109/TMAG.2009.2015052.
[6] Zhang M., Macdonald A., Tseng K.-J., Burt G.M., Magnetic Equivalent Circuit Modeling for Interior Permanent Magnet Synchronous Machine under Eccentricity Fault, 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, pp. 1–6 (2013), DOI: 10.1109/UPEC.2013.6715044.
[7] Ebrahimi B.M., Faiz J., Roshtkhari M.J., Static-, Dynamic-, and Mixed- Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors, IEEE Transactions on industrial electronics, vol. 56, no. 11, pp. 4727–4739 (2009), DOI: 10.1109/TIE.2009.2029577.
[8] Rosero J.A., Cusido J., Garcia A., Ortega J.A., Romeral L., Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor, 32nd Annual Conference on IEEE Industrial Electronics (IECON), Paris, France, pp. 964–969 (2006), DOI: 10.1109/IECON.2006.347599.
[9] Ilamparithi T., Nandi S., Saturation independent detection of dynamic eccentricity fault in salient-pole synchronous machines, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, pp. 336–341 (2013), DOI: 10.1109/DEMPED.2013.6645737. [10] Goktas T., Zafarani M., Akin B., Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors, IEEE Transactions on Energy Conversion, vol. 31, iss. 2, pp. 578–587 (2016).
[11] Coenen I., van der Giet M., Hameyer K., Manufacturing Tolerances: Estimation and Prediction of Cogging Torque Influenced by Magnetization Faults, IEEE Transactions on Magnetics, vol. 48, iss. 5, pp. 1932–1936 (2012), DOI: 10.1109/TMAG.2011.2178252.
[12] Gasparin L., Fiser R., Cogging torque sensitivity to permanent magnet tolerance combinations, Archives of Electrical Engineering, vol. 62, pp. 449–461 (2013), DOI: 10.2478/aee-2013-0036.
[13] International Organization for Standardization, ISO 1940-1: Mechanical vibration — Balance quality requirements for rotors in a constant (rigid) state, Geneva, Switzerland (2003).
[14] https://www.smalley.com/wave-springs/bearing-preload, accessed March 2020.
[15] Henrotte F., Felden M., van der Giet M., Hameyer K., Electromagnetic force computation with the Eggshell method, 14th International Symposium on Numerical Field Calculation in Electrical Engineering (IGTE), Graz, Austria (2010).
[16] Herold T., Franck D., Schröder M., Böhmer S., Hameyer K., Transientes Simulationsmodell für die akustische Bewertung elektrischer Antriebe, e & i Elektrotechnik und Informationstechnik, vol. 133, no. 2, pp. 55–64 (2016).

Go to article

Authors and Affiliations

Markus Jaeger
1
Pascal Drichel
2
Michael Schröder
1
Joerg Berroth
2
Georg Jacobs
2
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
  2. Institute of Systems Engineering and Machine Elements (MSE), RWTH Aachen University, Germany
Download PDF Download RIS Download Bibtex

Abstract

The continuous drive towards electrified propulsion systems has been imposing ever more demanding performance and cost targets for the future power electronics, machines and drives (PEMDs). This is particularly evident when exploring various technology road mapping documents both for automotive and aerospace industries, e.g. Advanced Propulsion Centre (APC) UK, Aerospace Technology Institute (ATI) UK, National Aeronautics and Space Administration (NASA) USA and others. In that context, a significant improvement of the specific performance and cost measures, e.g. power density increase by a factor of 10 or more and/or cost per power unit reduction by 50% or better, is forecasted for the next 5 to 15 years. However, the existing PEMD solutions are already at their technological limits to some degree. Consequently, meeting the performance and cost step change would require a considerable development effort. This paper is focused on electrical machines and their thermal management, which has been recognised as one of key enabling factors for delivering high specific output solutions. The challenges associated with heat removal in electrical machines are discussed in detail, alongside with new concepts of thermal management systems. Several examples from the available literature are presented. These include manufacturing techniques, new materials and novel integrated designs in application to electrical machines.
Go to article

Bibliography

[1] GOV UK, UK becomes first major economy to pass net zero emission law, available at: https://www.gov.uk/government/news/uk-becomes-first-major-economy-to-pass-net-zero-emissionslaw, accessed October 2021.
[2] EPA GOV, Global Greenhouse Gas Emissions Data, available at: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data, accessed October 2021.
[3] APC UK, The Roadmap Report, Towards 2040: A Guide to Automotive Propulsion Technologies, Advanced Propulsion Centre (APC) UK, pp. 1–136 (2018).
[4] ATI UK, Insight – Electrical Power Systems, Aerospace Technology Institute (ATI), pp. 1–16 (2018).
[5] Del Rosario R., A Future with Hybrid Propulsion Systems: A NASA Perspective, Turbine Engine Technology Symposium, Strategic Vision Workshop, Dayton, OH, USA, pp. 1–21 (2014).
[6] El-Refaie A., Osama M., High Specific Power Electrical Machines, CES Transactions on Electrical Machines and Systems, vol. 3, no. 1, pp. 88–9 (2017), DOI: 10.30941/CESTEMS.2019.00012.
[7] Popescu M., Staton D.A., Boglietti A., Cavagnino A., Hawkins D., Goss J., Modern Heat Extraction Systems for Power Traction Machines, IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2167–2175 (2016), DOI: 10.1109/TIA.2016.2518132.
[8] Gai Y., Kimiabeigi M., Chong Y.C., Widmer J.D., Deng X., Popescu M., Goss J., Staton D.A., Steven A., Cooling of Automotive Traction Motors: Schemes, Examples, and Computational Methods, IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1681–1692 (2019), DOI: 10.1109/TIE.2018.2835397.
[9] Yang Y., Bilgin B., Kasprzak M., Nalakath S., Sadek H., Preindl M., Cotton J., Schofield N., Emadi A., Thermal Management of Electric Machines, IET Electrical Systems in Transportation, vol. 7, no. 6, pp. 104–116 (2017), DOI: 10.1049/iet-est.2015.0050.
[10] Bennion K., Electric Motor Thermal Management, National Renewable Energy Laboratory (NREL), U.S. Department of Energy Vehicle Technologies Program Annual Merit Review, pp. 1-28 (2011).
[11] Lambourne A., Opportunities and Challenges of ALM in Electrical Machines, Advanced Propulsion Centre UK (APC UK), Seminar, Bristol, UK (2019).
[12] Wrobel R., Mecrow B., A Comprehensive Review of Additive Manufacturing in Construction of Electrical Machines, IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 1054–1064 (2020), DOI: 10.1109/TEC.2020.2964942.
[13] Wu F., El-Refaie A.M., Towards Additively-Manufactured Electrical Machines: Opportunities and Challenges, IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1306–1320 (2019), DOI: 10.1109/TIA.2019.2960250.
[14] Wrobel R., Mellor P.H., Popescu M., Staton D.A., Power Loss Analysis in Thermal Design of Permanent-Magnet Machines - Review, IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1359–1368 (2016), DOI: 10.1109/TIA.2015.2489599.
[15] Liu H., Ayat S.,Wrobel R., Zhang C., Comparative Study of Thermal Properties of ElectricalWindings Impregnated with Alternative Varnish Materials, IET Journal of Engineering, vol. 2019, no. 17, pp. 3736–3741 (2019), DOI: 10.1049/joe.2018.8198.
[16] Ayat S., Liu H., Kulan M., Wrobel R., Estimation of Equivalent Thermal Conductivity for Electrical Windings with High Conductor Fill Factor, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6529–6536 (2018).
[17] Wrobel R., Ayat S., Godbehere J., A Systematic Experimental Approach in Deriving Stator-Winding Heat Transfer, IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1–8 (2017).
[18] Chiodetto N., Mecrow B.,Wrobel R., Lisle T., Elector-Mechanical Challenges in the Design of a High- Speed-High-Power-PMSM Rotor for an Aerospace Application, IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, pp. 3944–3951 (2019).
[19] Gerada D., Mebarki A., Brown N.L., Gerada C., Cavagnino A., Boglietti A., High-Speed Electrical Machines: Technologies, Trends, and Developments, in IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2946–2959 (2014), DOI: 10.1109/TIE.2013.2286777.
[20] Moghaddam R.R., High speed operation of electrical machines, a review on technology, benefits and challenges, IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, pp. 5539–5546 (2014).
[21] Gieras J.F., Advancements in Electrical Machines – Power Systems, Springer (2008). [22] Additive News, Additive Manufacturing moves TUfast, available at: https://additivenews.com/additivemanufacturing-moves-tufast/, accessed October 2021.
[23] Wrobel R., Hussein A., A Feasibility Study of Additively Manufactured Heat Guides for Enhanced Heat Transfer in Electrical Machines, IEEE Transactions on Industry Applications, vol. 56, no. 1, pp. 205–215 (2020), DOI: 10.1109/TIA.2019.2949258.
[24] Sixel W., Liu M., Nellis G., Sarlioglu B., Cooling of Windings in Electrical Machines via 3D Printed Heat Exchanger, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 229–235, (2018).
[25] Sixel W., Liu M., Nellis G., Sarlioglu B., Ceramic 3D Printed Direct Winding Heat Exchangers for Improving Electric Machine Thermal Management, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 769–776 (2019).
[26] Lindh P., Petrov I., Pyrhonen J., Scherman E., Niemela M., Immonen P., Direct Liquid Cooling Method Verified with a Permanent-Magnet Traction Motor in a Bus, IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 4183–4191 (2019), DOI: 10.1109/TIA.2019.2908801.
[27] Lorenz F., Rudolph J.,Werner R., Design of 3D printed High Performance Windings for Switched Reluctance Machines, International Conference on Electrical Machines (ICEM), pp. 2451–2457 (2018).
[28] Pyrhonen J., Montonen J., Lindh P., Vauterin J., Otto M., Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings, International Review of Electrical Engineering, pp. 12–21 (2015), DOI: 10.15866/IREE.V10I1.5253.
[29] Wohlers C., Juris P., Kabelac S., Ponick B., Design and Direct Liquid Cooling of Tooth-Coil Winding, Electrical Engineering, Springer, vol. 100, no. 4, pp. 2299–2308 (2018), DOI: 10.1007/s00202-018-0704-x.
[30] Ayat S., Daguese B., Khazaka R., Design Considerations ofWindings Formed with Hollow Conductors Cooled with Phase Change Material, IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, pp. 5539–5546 (2019).
[31] Gai Y., Widmer J.D., Steven A., Chong Y.C., Kimiabeigi M., Goss J., Popescu M., Numerical and Experimental Calculations of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High- Power PMSM, IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4371–4380 (2020), DOI: 10.1109/TIE.2019.2922938.
[32] Davin T., Pelle J., Harmand S., You R., Experimental Study of Oil Cooling System for Electric Motors, Applied Thermal Engineering, Elsevier, vol. 75, no. 2, pp. 1–13 (2015), DOI: 10.1016/j.applthermaleng.2014.10.060.
[33] Brown G.V., Cryogenic Electric Motor Tested, NASA report – propulsion and power (2005).
[34] Arndt T., Basic Considerations and Recent Results in HTS Device Developments for Electric Aircraft, Safran-Group h Scientific Day, Paris, France (2020).
[35] ASuMED – Deliverable System Topology Report, 2017.

Go to article

Authors and Affiliations

Rafal Wrobel
1
ORCID: ORCID

  1. Newcastle University, United Kingdom

This page uses 'cookies'. Learn more