Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of electric vehicle charging station operation based on a dual active bridge topology. Two cases are considered: one with the use of a medium frequency planar transformer, the other with a conventional Litz winding transformer. An analysiswas performed using both solutions in order to compare the performance characteristics of the system for both cases and to present the differences between each transformer solution. The analysis was based on tests carried out on the full-scale model of an electric vehicle charging station, which is the result of the project "Electric vehicle charging system integrated with lighting infrastructure" realized by the Department of Drives and Electrical Machines, Lublin University of Technology. The results presented in the paper show that the conventional transformer used in the research achieved better results than the planar transformer. Based on the results obtained, the validity of using both solutions in electric vehicle charging stations was considered.
Go to article

Authors and Affiliations

Maciej Rudawski
1
ORCID: ORCID
Karol Fatyga
1
ORCID: ORCID
Łukasz Kwaśny
1

  1. Lublin University of Technology, ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper is a structured, in-depth analysis of dual active bridge modeling. In the research new, profound dual active bridge converter (DAB) circuit model is presented. Contrary to already described idealized models, all critical elements including numerous parasitic components were described. The novelty is the consideration of a threshold voltage of diodes and transistors in the converter equations. Furthermore, a lossy model of leakage inductance in an AC circuit is also included. Based on the circuit equations, a small-signal dual active bridge converter model is described. That led to developing control of the input and output transfer function of the dual active bridge converter model. The comparison of the idealized model, circuit simulation (PLECS), and an experimental model was conducted methodically and confirmed the high compatibility of the introduced mathematical model with the experimental one. Proposed transfer functions can be used when designing control of systems containing multiple converters accelerating the design process, and accurately reproducing the existing systems, which was also reported in the paper.
Go to article

Authors and Affiliations

Roman Barlik
1
Piotr Grzejszczak
1
Mikołaj Koszel
1

  1. Warsaw University of Technology, Warsaw, Poland

This page uses 'cookies'. Learn more