Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Salmonellosis is a public health concern worldwide and also causes huge losses to the piggery industry. A total of 457 fecal samples were collected from organized and unorganized farms including indigenous and crossbreed piglets of North East India. Salmonella isolates were serotyped, screened for their virulence genes, characterized for drug resistance pattern and representative isolates were cloned and sequenced for their partial length enterotoxin (stn) gene. A total of 8.31% Salmonella were identified with higher prevalence observed in unorganized compared to organized farms and higher detection level in cross breed compared to indigenous piglets. Salmonella typhimurium (65.78%) was found to be the predominant serovar and irrespective of serovars high number of isolates (68.4%) harboured enterotoxin gene. The isolates were multidrug resistant showing highest resistance against cefalexin (77.31%). Sequence analysis of stn gene showed two isolates having diverse sequence compared to other isolates. Our study revealed the significance of Salmonella as important pathogen with zoonotic potential between porcine and human populations. This is probably the first systematic study of Salmonella species associated with piglet diarrhea in India.

Go to article

Authors and Affiliations

H. Kylla
T.K. Dutta
P. Roychoudhury
P.K. Subudhi
J. Lalsiamthara
Download PDF Download RIS Download Bibtex

Abstract

Salmonella contamination in poultry feed is one of the main issues in poultry industry and public health. The aim of the present study was molecular detection and typing of Salmonella serotypes isolated from poultry feeds. Moreover, we determined the antibiotic resistance pattern and the ability of biofilm formation in the serotypes. To this end, eighty feed samples were collected from aviculture depots. Salmonella serotypes were identified by culture and PCR methods. For serological identification, a slide agglutination test was used. BOXAIR and rep-PCR methods were applied to evaluate the diversity of serotypes. The disc diffusion method was performed to evaluate the antibiotic susceptibility of serotypes to sixteen antibiotics. Biofilm formation was also assessed by the microtiter-plate test. From a total of 80 feed samples, 30 samples were contaminated with Salmonella spp., which were divided into 5 different serotypes belonging to B, C, and D serogroups. BOXAIR-PCR (D value [DI] 0.985) and rep-PCR (DI 0.991) fingerprinting of isolates revealed 23 and 19 reproducible fingerprint patterns, respectively. A higher antibiotic resistance was observed to ampicillin and doxycycline (100% each), followed by chloramphenicol (83.33%) and tetracycline (73.33%). Multidrug resistance (MDR) was detected in all Salmonella serotypes. Half of the serotypes possessed the ability of biofilm formation with varied adhesion strengths. These results revealed the high and unexpected prevalence of Salmonella serotypes in poultry feed with MDR and biofilm formation ability. BOXAIR and rep-PCR revealed a high diversity of Salmonella serotypes in feeds and subsequently indicated variation in the source of Salmonella spp. The unknown sources harboring high diversity of Salmonella serotypes indicated poor control, which could cause problems for feed manufacturing.
Go to article

Authors and Affiliations

G. Shahbazi
1
J. Shayegh
1
C. Ghazaei
2
M.H.M. Ghazani
1
S. Hanifian
3

  1. Department of Veterinary Medicine, Faculty of Veterinary and Agriculture, Shabestar Branch, Islamic Azad University, Shabestar, Iran
  2. Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran
  3. Department of Food Science and Technology, Biotechnology Research Center,Tabriz Branch, Islamic Azad University, Tabriz, Iran
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to evaluate in detail both the in vivo and in vitro efficacy of the enzyme agents, ZYMOX® Plus Otic (ZYMOX-P), in the treatment of canine otitis externa (OE). Eight dogs with a diagnosis of non-seasonal severe chronic OE were recruited for the study. ZYMOX-P was administered for 2-4 weeks. The Otitis Index Score (OTIS3) and bacteria or yeast colony growth were measured. Also, minimum biofilm (BF) formation inhibition concentration (MBIC) and BF bactericidal concentration (BBC) were measured in vitro. OTIS3 showed a statistically significant reduction after treatment (88.2%, p<0.001; pre-treatment = 11.0 ± 0.9; post-treatment = 1.3 ± 0.4, mean ± SEM). The individual OTIS scores, erythema, edema, erosions/ ulcerations, exudate and pruritus showed significant reduction (85.7%, 95.7%, 83.3%, 80.0%, and 89.3%, respectively). Microscopic examination revealed the presence of BF exopolysaccharide in all 8 ear samples when stained with alcian blue. Seven of the 8 dogs (87.5%) showed a reduction in colony growth. ZYMOX-P was effective at 34-fold and 16-fold dilutions on MBIC and BBC, respectively. These findings indicate that ZYMOX-P has efficacy against BF-related infection and is beneficial when used for the management of canine OE.
Go to article

Bibliography

Ayrapetyan M, Williams T, Oliver JD (2018) Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol 200: e00249-18.
Bowen WH (2016) Dental caries - not just holes in teeth! A perspective. Mol Oral Microbiol 31: 228-233.
Bradley CW, Lee FF, Rankin SC, Kalan LR, Horwinski J, Morris DO, Grice EA, Cain CL (2020) The otic micro- biota and mycobiota in a referral population of dogs in eastern USA with otitis externa. Vet Dermatol 31: 225-e49.
Carlsson J, Iwami Y, Yamada T (1983) Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun 40: 70-80.
Chan WY, Hickey EE, Hickey, Page SW, Trott DJ, Hill PB (2019) Biofilm production by pathogens associated with canine otitis externa and the antibiofilm activity of ionophores and antimicrobial adjuvants. J Vet Pharmacol Ther 42: 682-692.
Cunha E, Trovão T, Pinheiro A, Nunes T, Santos R, Moreira da Silva J, São Braz B, Tavares L, Veiga AS, Oliveira M (2018) Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet Res 14: 375.
Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2: 114-122.
Ding L, Su X, Yokota A (2011) Research progress of VBNC bacteria-a review. Wei Sheng Wu Xue Bao 51: 858-862.
Forssten SD, Björklund M, Ouwehand AC (2010) Streptococcus mutans, caries and simulation models. Nutrients 2: 290-298.
Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354: aaf4268.
Holá V, Růzicka F, Votava. M (2004) Differences in antibiotic sensitivity in biofilm-positive and biofilm-negative strains of Staphylococcus epidermidis isolated from blood cultures. Epidemiol Mikrobiol Imunol 53: 66-69.
Jacobson LS (2002) Diagnosis and medical treatment of otitis externa in the dog and cat. J S Afr Vet Assoc 73: 162-170.
Klancnik A, Guzej B, Jamnik P, Vucković D, Abram M, Mozina SS (2009) Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res Microbiol 160: 345-352.
Li H., Wei X, Yang J, Zhang R, Zhang Q, Yang J (2019) The bacteriolytic mechanism of an invertebrate-type lysozyme from mollusk Octo-pus ocellatus. Fish Shellfish Immunol 93: 232-239.
Nuttall T, Bensignor E (2014) A pilot study to develop an objective clinical score for canine otitis externa. Vet Dermatol 25: 530-537.
Otsuka R., Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59: 28-36.
Peters JL, DeMars PL, Collins LM, Stoner JA, Matsumoto H, Komori N, Singh A, Feasley CL, Haddock JA, Levine M (2012) Effects of immunization with natural and recombinant lysine decarboxylase on canine gingivitis development. Vaccine 30: 6706-6712.
Qekwana DN, Oguttu JW, Sithole F, Odoi A (2017) Patterns and predictors of antimicrobial resistance among Staphylococcus spp. from canine clinical cases presented at a veterinary acadeic hospital in South Africa. BMC Vet Res 116.
Schulthess B, Bloemberg GV, Zbinden R EC, Böttger EC, Hombach MJ (2014) Evaluation of the Bruker MALDI Biotyper for identification of Gram-positive rods: deve- lopment of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol 52: 1089-1097.
Stone VN, Xu P (2017) Targeted antimicrobial therapy in the microbiome era. Mol Oral Microbiol 32: 446-454.
Su X, Chen X, Hu J, Shen C, Ding L (2013) Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 29: 2213-2218.
Tsukatani T, Sakata F, Kuroda R (2020) A rapid and simple measurement method for biofilm formation inhibitory activity using 96-pin micro-titer plate lids. World J Microbiol Biotechnol 36: 189.
Wu MT, Burnham CA, Westblade LF, Dien Bard J, Lawhon SD, Wallace MA, Stanley T, Burd E., Hindler J, Humphries RM (2016) Evaluation of oxacillin and cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in human and veterinary isolates of Staphy-lococcus intermedius Group. J Clin Microbiol 54: 535-542.
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serra-no-Luna J, de la Garza M (2020) Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by patho-gens. Molecules 25: 5763.
Zhu K, Zheng J, Xing J, Chen S, Chen R, Ren L (2022) Mechanical, antibacterial, biocompatible and microleakage evaluation of glass iono-mer cement modified by nanohydroxyapatite/polyhexamethylene biguanide. Dent Mater J 41: 197-208.
Go to article

Authors and Affiliations

M. Fujimura
1

  1. Fujimura Animal Allergy Hospital, Aomatanihigashi 5-10-26, Minou-city, Osaka 562-0022, Japan
Download PDF Download RIS Download Bibtex

Abstract

Currently, we are facing the ever-increasing phenomenon of bacteria being resistant to antibiotics. It is the consequence of excessive and incorrect use of drugs. The phenomenon is a global problem affecting bacteria both in their hospital population and in the natural environment. Municipal waste is an environment conducive to the development of microorganisms, therefore it contains various groups of bacteria, including drug-resistant staphylococci. The aim of the study was to identify species of bacteria, determine their antibiotic resistance, and assess the occurrence of genes responsible for methicillin resistance in Staphylococcus aureus isolated from mixed municipal waste. Strains were isolated by Koch’s serial dilution method with the use of microbiological media. Species were identified using the MALDI TOF-MS technique, whereas the drug resistance profile was determined by disk diffusion and molecular PCR methods. 250 isolates of S. aureus were collected. The highest resistance found was to cefoxitin, erythromycin and tetracycline. Among the bacteria collected, resistance to 1, 2, 3 or 4 antibiotics at the same time was the most common, with a maximum of 10. Additionally, 45 (18%) MDR (multidrug-resistant) isolates were detected. Methicillin resistance was found by the disk diffusion test in 60 (24%) strains, while the mecA gene was detected in as many as 180 (72%) isolates.
Go to article

Authors and Affiliations

Katarzyna Wolny-Koładka
1
ORCID: ORCID

  1. University of Agriculture in Krakow, Department of Microbiology and Biomonitoring, al. Mickiewicza 24/28, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objectives of this study were to determine the genetic relatedness, antibiogram and virulence factors of Staphylococcus aureus (S. aureus) isolated from bovine mastitis, associated farm workers, dairy cow farm veterinarians (private veterinarians), veterinary students, and non-veterinary university students. A total of 84 S. aureus isolates (27 from mastitis, 11 from farm workers, 9 from private veterinarians, 22 from veterinary students, and 16 from non-veterinary university students) were used to determine antimicrobial sensitivity patterns using disk diffusion test, virulence factors using PCR technique and phylogenic analysis using pulsed field gel electrophoresis. All S. aureus isolates were resistant to 2 or more commonly used antibiotics. All isolates from mastitis, farm workers, and veterinary students carried the genes encoding coagulase and thermonuclease factors while isolates from non-veterinary university students carried the genes encoding coagulase, clumping, and thermonuclease factors. The mecA gene was detected in 22.2%, 81.8%, 100%, 95.5% and 100% of isolates from mastitis, farm workers, private veterinarians, veterinary students, and non-veterinary university students, respectively. In the phylogenic analysis, 10 (45.5%), 6 (66.7%) and 8 (72.7%) isolates from veterinary students, private veterinarians and farm workers, respectively were more than 80% similar to isolates from mastitis. Results of this study indicate that S. aureus isolates from mastitis milk and those from related dairy cow personnel and veterinarians share similar antimicrobial sensitivity patterns and virulence factors, therefore a common source of bacteria may exist. Furthermore, possible transmission of S. aureus between cows and cow-related personnel and vice versa could also exist.

Go to article

Authors and Affiliations

M.O. Alekish
Z. Bani Ismail
M. Gharaibeh
L. Abu-Qatous

This page uses 'cookies'. Learn more