Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the context of climate change, it is important to minimize the changes that are introduced in the territory adjacent to the object of human economic activity. In some cases, this can be done with the help of drainage-screened modules – an anti-filtration screen that redistributes the zone of influence of the drain placed near it. As a result, the drain regulates to a greater extent the zone of human economic activity (drainage system, tailing dump, populated area, etc.) and to a lesser extent lowers the level of groundwater in the adjacent territory. The use of drainage-screened modules in tailing farms, for the organized storage of mineral waste of enterprises makes it possible to increase the filtration stability of dike, ensuringthe uniform operation of the tailing dams, as well as reliable removal of intercepted groundwater. This is achieved because in the tailing farm the dikes are intensified by drainage-screened modules. Water, filtered through the body of the dike and under it, is intercepted by a drain. A part of the filtration flow, which is not intercepted by the drain, is stopped by the anti-filtration screen.

Go to article

Authors and Affiliations

Serhii Klimov
Oleg Pinchuk
Serhii Kunytskiy
Anastasiia Klimova
Download PDF Download RIS Download Bibtex

Abstract

The European Water Framework Directive can have enormous consequences for agricul-ture in the Netherlands. In parts of the country agriculture should be taken out of production because the nutrient loads to the surface water system are far too high. This doom scenario is of course unde-sired and a number of source-specific and effect-specific measures are necessary. The fate of nutri-ents in the soil is strongly interrelated with its hydrology. Directly, because nutrients are transported by water and the distribution of the residence time of drainage water is a good measure for the time behaviour of the nutrient loads to the surface water system. Longer residence time in the soil means more of nutrients applied by farmers but also a longer recovery period, after applying source-specific measures. In this paper three promising effect-specific hydrological measures are described buffer strips, retention strips, and controlled drainage.

Go to article

Authors and Affiliations

Jan van Bakel
Download PDF Download RIS Download Bibtex

Abstract

Wetlands play a significant role in agricultural landscape. They are the areas of exception-ally great natural values able to regulate water cycling in river catchments. In many cases they are the basic food source for bred animals.

Large areas of wetlands (c. 4 million ha) have been drained for agricultural purposes in Poland. Nevertheless, there are still numerous natural (or close to natural) wetlands, part of which is protected in nature reserves or national parks.

Having in mind the transformation of agriculture and the need of protecting water resources and natural environment, it is necessary to regulate the principles of utilisation and management of re-claimed wetlands. Water management should be adjusted to the type of an area and to environmental requirements. Regardless of the type and intensity of agricultural use of wetlands one has to aim at limiting rapid outflow of spring thaw and rainfall waters which means the reconstruction and increas-ing of natural retention capacity of the river catchment. It is necessary to provide an appropriate num-ber of water lifting facilities and their proper exploitation in land reclamation objects.

It is as well necessary to create appropriate organizational, legal and financial conditions stimu-lating actions to improve water balance and wetland protection.

Go to article

Authors and Affiliations

Waldemar Mioduszewski
Download PDF Download RIS Download Bibtex

Abstract

The study presents the critical evaluation of existing drainage systems from legal, eco-nomical, environmental and technical viewpoints. Nearly 80% of agricultural land in Lithuania drained by underground drainage systems covers around 3 million hectares. The prevailing large scale drainage systems with a complex of engineering structures such as conducting ditches, drains and collectors, local roads, bridges or farm road-crossings, dikes, dams, water reservoirs, pumping stations for irrigation and for drainage need today an efficient management solution in a new economic situation. The detailed analysis of legal and economic instruments adopted in transferring the management responsibilities of drainage systems to users has been carried out. The study resulted in a number of practical contributions towards the amendments in the Law on Land Reclamation in Lithuania and the establishment of a system of indicators that would allow rationalisation of subsidy allocations for the maintenance and improvement of the drainage systems. These subsidies from the state budget make at the moment the largest share among the investment sources. The financial and in kind contribution of drainage users is permanently increasing as are the allocations of the structural funds for public projects. The EU pre-accession programme SAPARD started in 2000 has supported some investments in rural areas. Unfortunately, it did not support the drainage infrastructure properly. A critical review of previous measures allowed suggesting new actions within the framework of the actual support from EU structural funds.

Go to article

Authors and Affiliations

Antanas Maziliauskas
Vytautas Morkunas
Zenonas Rimkus
Valentinas Šaulys
Download PDF Download RIS Download Bibtex

Abstract

The research was carried out on a small (52.8 ha) and shallow (4 m) Lake Track in Olsztyn, exposed to a considerably intense anthropogenic pressure. In the middle 1800s this reservoir was dried out and most of the contiguous land was designated for agricultural purposes. The lake was restored in the mid 1900s. At present, the drainage basin of Lake Track is 216 ha. Urban land comprises the largest portion of this area, i.e. 49.3%, barren land 41.4% and forests 6. I%. The lake receives storm waters but for years it had also received sanitary sewage. The results of this research allowed classifying the lake as nutrient-rich, with fairly advanced eutrophication processes. The waters were characteristic of very high nutrients content, up to 0.75 mg P/dm3 and 3.87 mg N/dm3. The high fertility of Lake Track was additionally confirmed by high BOD, values, i.e. up to 9.5 mg 0/dm3, high chlorophyll content, usually from 30 to 40 mg/m3 but reaching 123 mg/m3, and low water transparency, oscillating between 0.6 and 0.9 m. The reason for the lake's high trophic level was no doubt the excessive loading from the drainage basin. The actual nutrient runoff from the drainage basin to the lake exceeded the critical loads, as defined by Vollenweider. Low quality of the lake's waters and the parallel high external loading indicate that preventive measures should be taken, aimed at reducing the external loading.
Go to article

Authors and Affiliations

Jolanta Grochowska
Helena Gawrońska
Download PDF Download RIS Download Bibtex

Abstract

CropSyst model can be used as irrigation water management tool to increase wheat productivity with poor quality water. The objective of this study was to calibrate CropSyst model for wheat irrigated with fresh and agricultural drainage water. To do so, three field experiments were conducted during three successive seasons in Nubaria Agricultural Research Station, Egypt representing the newly reclaimed calcareous soils. In the first season the treatments were 100% crop evapotranspiration (ETc) of fresh water (FW) and 100% ETc of agricultural drainage water (DW), while in the second and the third seasons, the treatments were 100% ETc of FW, 100% ETc of DW, 120% ETc of DW and 130% ETc of DW. From these results one can concluded that deducting 5% of the applied water to all treatments reduced yield by 3, 5 and 7% in the first, second and third growing season, respectively as a result of heat stress existed in the 2nd and 3rd seasons during reproductive phase. Furthermore, deducting 5% of the applied water from all treatments in the vegetative phase only resulted in lower yield losses. Thus, using CropSyst model could guide us to when we could reduce the applied irrigation water to wheat to avoid high yield losses.

Go to article

Authors and Affiliations

Samiha A. Ouda
Tahany Noreldin
Oussama H. Mounzer
Magdi T. Abdelhamid
Download PDF Download RIS Download Bibtex

Abstract

Polish water resources depend on precipitations, which are variable in time and space. In dry years the water balance is negative in central parts of Poland but sudden thaws and downfalls may result in periodical water excess and dangerous floods almost in the entire country. The retention capacity of artificial reservoirs in Poland permits to store only 6% of the average annual runoff, which is commonly considered insufficient. Another method to increase retention is soil water con-trol. About fifty percent of soils in Poland consist of light and very light sandy soils with low water capacity. Loams and organogenic soils cover approximately 25% and 8.5% area of the country, re-spectively. Almost half of agricultural lands (48%) have relatively good water conditions, but the rest requires soil water control measures. An increase of the soil water content could be achieved by changes of soil properties, water table control and soil water management. Modernization and recon-struction of drainage and irrigation systems, which were built mainly in the period 1960–1980, is needed.

Go to article

Authors and Affiliations

Edward Pierzgalski
Jerzy Jeznach
Download PDF Download RIS Download Bibtex

Abstract

The abundance of water has certainly been a very important resource for the development of the Po Valley and has necessitated, more than once, interventions of regulation and drainage that have contributed strongly to imprint a particular conformation on the land. Already in Roman times there were numerous projects of canalisation and intense and diligent commitment to the maintenance of the canals, used for navigation, for irrigation and for the working of the mills. The need to control the excessive amount of water present was the beginning of the exploitation of this great font of richness that was constantly maintained in subsequent eras. In the early Middle Ages, despite the conditions of political instability and great economic and social difficulty, the function of the canals continued to be of great importance, also because the paths of river communication often substituted land roads, then left abandoned. After the 11th century A.D. the resumption of agricultural activity was conducive to the intense task of land reclamation of the Lombardian countryside and of commitment by the cities to amplify their waterways with the construction of new canals and the improvement of those already existing. The example given by Milan, a city lacking a natural river, that equipped itself with a dense network of canal, used in various ambits of the city life (defence, hygiene, agriculture, transport, milling systems) and for connections with the surrounding territory, can be considered as emblematic. In the surrounding countryside, the activity of the Cistercian monks of Chiaravalle represents one of the situations more indicative of how land reclamation and waterways contributed fundamentally to the organisation of the territory over the span of the ages.

Go to article

Authors and Affiliations

Giuliana Fantoni
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the option for the application of the methodology for the solution of boundary value problems on the conformal mapping for the calculation of filtration process in the horizontal systematic drainage, provided that the drain is installed at a different depth. In particular, the case of methods combining fictitious areas and quasiconformal mappings for solving nonlinear boundary conditions problems for calculating filtration regimes in soils with free sections of boundaries (depression curves) and intervals of the “drainage” type. As an example, the authors designed a hydrodynamic flow grid, determined the values of the flows to the drain, established a section line and elicited other process characteristics. The algorithm for the numerical solution of model nonlinear boundary conditions problems of quasiconformal reflection in areas bounded by two equipotential lines and two flow lines, when for one of the sections, the boundary is an unknown (free) curve with fixed and free ends. The conducted numerical calculations prove that the problems and algorithms of their numerical solution, with a relatively small iterations number (k = 141) suggested in the paper, can be applied in the simulation of nonlinear filtration processes that arise in horizontal drainage systems. Total filtration flow obtained Q = 0.9 dm3·s–1; flow for drains Q1 = 0.55 dm3·s–1 and Q2 = 0.35 dm3·s–1 are quite consistent with practically determined values.
Go to article

Authors and Affiliations

Volodymyr Havryliuk
1
ORCID: ORCID
Andrii Bomba
2
ORCID: ORCID
Oleg Pinchuk
2
ORCID: ORCID
Ievgenii Gerasimov
2
ORCID: ORCID
Serhii Klimov
2
ORCID: ORCID
Mykola Tkachuk
2
ORCID: ORCID
Vasyl Turcheniuk
2
ORCID: ORCID

  1. Rivne State University of Humanities, Rivne, Ukraine
  2. National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the transformation of water resources induced by the construction and functioning of the Brest Fortress defence structure and presents the current water resources resulting from these changes. The study was conducted by analysing historical materials: maps, plans and written documents. Hydrographic changes were analysed for five study periods covering almost 200 years, from 1823, presenting the hydrographic network before the construction of fortifications, up to 2018, when most of these structures ceased or were repurposed. Hydrographic changes were analysed in detail for the area of the Terespol Fortification. The analysis revealed that almost 80% of the wetland area had disappeared after intensive drainage works, and several dozen originally small and isolated areas had been incorporated into a vast drainage network. One of the consequences of these activities was the creation of significantly transformed artificial catchments within the study area.
Go to article

Authors and Affiliations

Katarzyna Mięsiak-Wójcik
1
ORCID: ORCID

  1. Maria Curie-Sklodowska University, Institute of Earth and Environmental Science, Kraśnicka Av. 2D, 20-718 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The goal of the presented research works is to prove the following thesis: Does the process of contaminants reduction and effiuent application for arable land fertilization justify the treatment method of waste water from a yeast production facility in soil and plant environment. In order to achieve the above mentioned goal, basically the dynamics of physical and chemical properties change observed for waters, soils and plants irrigated with wastewater from yeast factory has been studied for many years. Part I presented the problems characteristics of production as well as water and wastewater management in the yeast factory, principles and technological effectiveness of the treatment of process wastewater from yeast production in soil - plant environment and impact of irrigation with wastewater on water purity. The research proved that very high biological treatment indices are achieved on the Silesian Yeast Factory fields where process wastewater is utilized i.e. concentration reduction for: BOD5 - 99.3% and COD - 99.7%, - for eutrophic compounds: N,0,.1 - 98.83%, P - 96.25% and K - 99.18%. The obtained percentage of concentration reduction is higher than the standards assumed in the water supply and wastewater discharge consent issued to the factory. The drainage water from the fields irrigated with yeast effluent is of I, II and III class of purity.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Ryszard Błaszków
Download PDF Download RIS Download Bibtex

Abstract

Green roofs are increasingly popular in both new and modernised buildings. They significantly reduce the outflow of stormwater from buildings and change its composition. Wherever an urbanised area is equipped with a separate sewage system, usually stormwater goes directly to the receiver without treatment, which may affect the quality of water in the receiver. The article presents results of research carried out on the green roof of a building in Lodz, Poland. During rainfall, the flow rate from the roof was measured. With the use of the US EPA software Stormwater Management Model (SWMM) a model of the green roof was created and calibrated using rainfall data from the city’s pluviometric network. Based on the measurements of the roof runoff, as well as SWMM modelling, the degree of outfall reduction was determined. Samples of roof runoff were collected to study the characteristics of rainwater, including pH, electrical conductivity, organic compounds, nitrogen, phosphorus, and suspended solids. The results were compared with the quality of runoff from a traditional roof. Except ammonium nitrogen, values of the examined quality indicators was higher in the case of the green roof but the pollution load of almost all contaminants, except phosphorus, were lower due to a significant reduction in the volume of stormwater outflow (62–91%). The quality of stormwater discharged from the green roof improved with its age.
Go to article

Authors and Affiliations

Grażyna Sakson
1
ORCID: ORCID

  1. Lodz University of Technology, Institute of Environmental Engineering and Building Installations, Al. Politechniki 6, 90-924, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Flooding in the northern part of The Netherlands has caused serious economic threats to densely populated areas. Therefore a project has been carried out in a pilot area to assess the retention of water in two river basins as a way to reduce flooding. The physically-based groundwater and sur-face water model SIMGRO was used to model the hydrology of the basins. The model was calibrated using discharges and groundwater levels. Scenarios of measures to assess the possibility of retaining water in the basin were then defined and tested. The first measure was the retention of higher dis-charges using culverts or gates in the upstream part of the basin. The second measure was to make the streams shallower and thereby, increase flood plain storage. The last measure was flood water storage in a designated area in the downstream part of one basin. The analysis indicates that holding water in the upstream parts of the basins proved to be feasible and can result in significant reductions of peak flows.

Go to article

Authors and Affiliations

Erik P. Querner
Download PDF Download RIS Download Bibtex

Abstract

Flood risk management are considerably influenced by several factors, such as all sources of flooding, social circum-stances, policy and even the potential for local economic growth. To encourage government, business, community and oth-er parties to continue investing in flood risk management projects, it is necessary to give understanding that the projects can also provide economic benefits through systematic predictions and assessments of costs, benefits and social values, espe-cially on flood-affected communities. This study aims: (1) to develop knowledge and understanding on small-scale flood risk management project in Malang City, Indonesia, and; (2) to assess the economic efficiency of the project investment considering all benefits, both monetary and non-monetary. The research method is a mixed method combining quantitative questionnaires (N = 53 from 162 families) with qualitative in-depth interviews (N = 10) and field observations. The runoff discharge and the inundation depth were calculated using hydrology and hydraulic analysis, while the economic efficiency was analysed using cost benefit analysis (CBA). The results show that the community-based flood risk management system can reduce the flood risk up to 30% compared to before the implementation of that system. This system also provides direct financial benefits through the use of drainage channels for fish and vegetables farming. It causes the increase of the net so-cial benefit about 70–90% and the net present value (NPV) greater than zero (NPV > 0). Therefore, the project investment is recommended to be proceeded.

Go to article

Authors and Affiliations

Laksni Sedyowati
ORCID: ORCID
Grahita Chandrarin
Ginanjar I.K. Nugraha
Bambang Nugroho
Download PDF Download RIS Download Bibtex

Abstract

The development of cities and peri-urban areas is exerting an increasingly strong impact on the natural environment and, at the same time, on the living conditions and health of people. Problems and challenges that need to be addressed include increasing air pollution in these areas, formation of a surface urban heat island (SUHI), water management disruptions (water scarcity or excess), and the destruction of natural habitats. One of the solutions that contributes to climate change mitigation is the introduction of blue-green infrastructure into the city space and urbanised areas. The research objective was to identify spatial features (geodata) that determine the optimum location of selected blue-green infrastructure (BGI) components, acquire them, and then use the Geographical Information System (GIS) to determine their optimum locations. As the first step, cartographic models were developed which indicated areas that enable the development of selected blue-green infrastructure components in the Olsztyn city area, Warmińsko-Mazurskie Province, Poland. The models were juxtaposed with other two models developed by the authors, i.e. a surface urban heat island model and a demographic model that showed the age structure of the city’s population. Consequently, maps with potential locations for the blue-green infrastructure were developed, while taking into account reference data from the National Land Surveying and Cartographic Resource and Landsat 8 images.
Go to article

Authors and Affiliations

Szymon Czyża
1
ORCID: ORCID
Anna M. Kowalczyk
2
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Department of Geoinformation and Cartography, Olsztyn, Poland
  2. University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Department of Geodesy, St. Heweliusza 12, Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this experimental study was to examine whether an assisting layer of lightweight expanded clay aggregate (LECA) of the granulation 1–4 mm, introduced into a subsoil, is able to improve an efficiency of removal of total nitrogen and total phosphorus from domestic wastewater. In the investigations, an assisting 0.10 and 0.20 m thick LECA layer was applied. It has been observed that the effectiveness of removal of total suspended solids (TSS), total nitrogen and total phosphorus from wastewater as well as the level of biochemical oxygen demand ( BOD 5) and chemical oxygen demand ( COD) is in accordance with the Polish standards on wastewater disposal into grounds and surface water. The performed experiments showed that the effectiveness of raw wastewater purification for the medium sand soil bed with the 0.20 m thick assisting LECA layer is higher than for the 0.10 m thick assisting layer. In the medium sand soil bed with the 0.20 m thick assisting LECA layer, the removal efficiency regarding total nitrogen increased by 20.6%, total phosphorus by 5.2%, ammonium nitrogen by 8.8% and TSS by 5.3%, and reduction efficiency regarding BOD 5 increased by 1.7% and COD by 2.3% with relation to the 0.10 m thick assisting LECA layer (all percentages – in average). The results of the experiment showed that the LECA with the granulation 1–4 mm can be used to assist in removal of total nitrogen and total phosphorus from wastewater with application of infiltration drainage.
Go to article

Authors and Affiliations

Marek Kalenik
1
ORCID: ORCID
Piotr Wichowski
1
ORCID: ORCID
Marek Chalecki
2
ORCID: ORCID
Adam Kiczko
1
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Department of Mechanics and Building Structures, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the concept and deployment of the agro-hydro-meteorological monitoring system (abbrev. AgHMM) created for the purposes of operational planning of regulated drainage and irrigation on the scale of a drainage/irrigation system (INOMEL project). Monitoring system involved regular daily (weekly readings) measurements of agrometeorological and hydrological parameters in water courses at melioration object during vegetation seasons. The measurement results enable an assessment of the meteorological conditions, moisture changes in the 0-60 cm soil profile, fluctuations of groundwater levels at quarters and testing points, also water levels in ditches and at dam structures, and water flow in water courses. These data were supplemended by 7-day meteorological forecast parameter predictions, served as input data for a model of operational planning of drainage and subirrigation at the six melioration systems in Poland. In addition, it was carried out irregular remote sensing observations of plant condition, water consumption by plants and soil moisture levels using imagery taken by unmanned aerial vehicles and Sentinel’s satellites. All the collected data was used for support operational activities aimed at maintaining optimal soil moisture for plant growth and should to provide farmers with high and stable yields. An example of the practical operations using the AgHMM system in 2019 is shown on the basis of the subirrigation object at permanent grasslands located in central Poland called “Czarny Rów B1”.
Go to article

Authors and Affiliations

Ewa Kanecka-Geszke
1
ORCID: ORCID
Bogdan Bąk
1
ORCID: ORCID
Tymoteusz Bolewski
1
ORCID: ORCID
Edmund Kaca
2
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
  2. Warsaw University of Life Sciences (SGGW), Institute of Environmental Engineering, 02-787 Warsaw, Poland

This page uses 'cookies'. Learn more