Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The conventional port distribution power system is being disrupted by increasing distributed generation (DG) levels based on integrated energy. Different new energy resources combine with conventional generation and energy storage to improve the reliability of the systems. Reliability assessment is one of the key indicators to measure the impact of the distributed generation units based on integrated energy. In this work, an analytical method to investigate the impacts of using solar, wind, energy storage system (ESS), combined cooling, heating and power (CCHP) system and commercial power on the reliability of the port distribution power system is improved, where the stochastic characteristics models of the major components of the new energy DG resources are based on Markov chain for assessment. The improved method is implemented on the IEEE 34 Node Test Feeder distribution power system to establish that new energy resources can be utilized to improve the reliability of the power system. The results obtained from the case studies have demonstrated efficient and robust performance. Moreover, the impacts of integrating DG units into the conventional port power system at proper locations and with appropriate capacities are analyzed in detail.
Go to article

Authors and Affiliations

Liang Fang
1
Xiao-Yan Xu
1
Jun Xia
2
Tomasz Tarasiuk
3

  1. Shanghai Maritime University, Shanghai, 201305, China
  2. Marine Design and Research Institute of China, Shanghai, 201305, China
  3. Gdynia Maritime University, ul. Morska 81/87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

Among the FACTS device, the distributed power flow controller (DPFC) is a superior device. This can be evaluated after eliminating the dc capacitor between shunt and series convertors of the unified power flow controller (UPFC) and placing a number of low rating single phase type distributed series convertors in the line instant of using single large rating three phase series convertors as in the UPFC. The power flow through this dc capacitor as in the UPFC now takes place through the transmission line at a third harmonic frequency in the DPFC. The DPFC uses the D-FACTS that allows the replacement of a large three-phase converter as in the UPFC by several small-size series convertors present in the DPFC. The redundancy of several series convertors increases the system’s reliability of the power system. Also, there is no requirement for high voltage isolation as series convertors of the DPFC are hanging as well as single-phase types. Consequently, the DPFC system has a lower cost than the UPFC system. In this paper, the equivalent ABCD parameters of the latest FACTSdeviceDPFChave been formulated with the help of an equivalent circuit model of the DPFC at the fundamental frequency component. Further, the optimal location in the transmission line and maximum efficiency of the DPFC along with Thyristor Controlled Series Compensator (TCSC), Static Synchronous Shunt Compensator (STATCOM) and UPFC FACTS devices have been investigated using an iteration program developed in MATLAB under steady-state conditions. The results obtained depict that the DPFC when placed slightly off-center at 0.33 fraction distance from the sending end comes up with higher performance. Whereas, when the TCSC, STATCOM and UPFC are placed at 0.16, 0.2815, 0.32 fraction distances from sending end respectively give their best performance.
Go to article

Bibliography

[1] Edris A.A., Aapa R., Baker M.H., Bohman L., Clark K., Proposed terms and definitions for flexible ac transmission system (FACTS), IEEE Trans. on Power Delivery, vol. 12, no. 4, pp. 1848–1853 (1997), DOI: 10.1109/61.634216.

[2] Das D., Divan D.M., Harley R.G., Power flow control in networks using controllable network transformers, IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1753–1760 (2010), DOI: 10.1109/ TPEL.2010.2042076.

[3] Ooi B.T., Kazerrani M., Marcean R., Wolanski Z., Galiana F.D., Megillis D., Jms G., Midpoint siting of FACTS devices in transmission lines, IEEE Trans. on power delivery, vo1. 12, no. 4, pp. 1717–1722 (1997), DOI: 10.1109/61.634196.

[4] Hingorani N.G., Gyugyi L., Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, New York: IEEE Press (2000).

[5] Nabavi-Niak A., Iravani M.R., Steady-State and Dynamic Models of Unified Power Flow Con- troller (UPFC) for Power System Studies, IEEE Trans. Power Systems, vol. 11, no. 4 (1996), DOI: 10.1109/59.544667.

[6] Harjeet Johal, Deepak Divan, Design Considerations for Series-Connected Distributed FACTS Converters, IEEE Transactions on Industry Applications, vol. 43, iss. 6, pp. 1609–1618 (2007), DOI: 10.1109/TIA.2007.908174.

[7] Amir Hamidi, Sajjad Golshannavaz, Daryoush Nazarpour, D-FACTS Cooperation in Renewable Inte- grated Microgrid A Linear Multiobjective Approach, IEEE Transactions on Sustainable Energy, vol. 10, iss. 1, pp. 355–363 (2019), DOI: 10.1109/TSTE.2017.2723163.

[8] Narasimha Rao D., Srinivasa Varma P., Comparison of UPFC and DPFC, Journal of Critical Reviews, vol. 7, iss. 6 (2020), DOI: 10.31838/jcr.07.06.153.

[9]Abhilash Sen, Atanu Banerjee, Haricharan Nannam, A Comparative Analysis between UPFC and DPFC in a Grid Connected Photovoltaic System, IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) (2019), DOI: 10.1109/IN- COS45849.2019.8951352.

[10] Song W., Zhou X., Zhigang Liang, Subhashish Bhattacharya, Huang Alex Q., Modeling and Control Design of Distributed Power Flow Controller based-on Per-phase control, IEEE Energy Conversion Congress and Exposition (2009), DOI: 10.1109/ECCE.2009.5316307.

[11] Chandrakar V.K., Kothari A.G., Optimal Location for Line Compensation by Shunt Connected FACTS Controller, IEEE Power Electronics and Drive Systems Conference, vol. 1, pp. 151–156 (2003), DOI: 10.1109/PEDS.2003.1282736.

[12] Vikash Anand, Sanjeev Kumar Mallik, Power flow analysis and control of distributed FACTS de- vices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018), DOI: 10.24425/123662.

[13] Zhihui Yuan, de Haan Sjoerd W.H., Ferreira Jan A., Construction and first result of a scaled transmis- sion system with the Distributed Power Flow Controller (DPFC), 13th European Conference on Power Electronics and Applications (2009).

[14] Zhihui Yuan, de Haan Sjoerd W.H., Braham Frreira, Dalibor Cevoric, A FACTS Device: Dis- tributed Power Flow Controller (DPFC), IEEE Trans. Power Electronics, vol. 25, no. 10 (2010), DOI: 10.1109/TPEL.2010.2050494.

[15] Syona Chawla, Sheetal Garg, Bhawna Ahuja, Optimal Location of Series-Shunt FACTS Device for Transmission Line Compensation, IEEE Control, Automation, Communication and Energy Conservation Conference, pp. 1–6 (2009).

[16] Shehata Ahmed A., Refaat Ahmed, Mamdouh K. Ahmed, Korovkin Nikolay V., Optimal placement and sizing of FACTS devices based on Autonomous Groups Particle Swarm Optimization technique, AEE, vol. 70, no. 1, pp. 161–172 (2021), DOI: 10.24425/aee.2021.136059.

[17] Riadh Essaadali, Anwar Jarndal, Ammar B. Kouki, Fadhel M. Ghannouch, Conversion Rules Between X-Parameters and Linearized Two-Port Network Parameters for Large-Signal Operating Conditions, IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 11, pp. 4745 4756 (2018), DOI: 10.1109/TMTT.2018.2863227.

[18] Divya S., Shyamala U., Power quality improvement in transmission systems using DPFC, IEEE 2nd International Conference on Electronics and Communication Systems (ICECS) (2015), DOI: 10.1109/ ECS.2015.7125035.

[19] Apolinar Reynoso-Hernández J., Pulido-Gaytán M.A., Cuesta R., Loo-Yau J.R., Maya-Sánchez M.C., Transmission Line Impedance Characterization Using an Uncalibrated Vector Network Analyzer, IEEE Microwave and Wireless Components Letters, vol. 30, no. 5, pp. 528–530 (2020), DOI: 10.1109/ LMWC.2020.2984377.

[20] Monika Sharma, Annapurna Bhargava, Pinky Yadav, Oscillation Damping with DPFC Using Opti- mization Techniques, IEEE International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE) (2017), DOI: 10.1109/ICMETE.2016.73.

[21] Mengmeng Xiao, Shaorong Wang, Yong Huang, Chao Zheng, Qiushi Xu, Hongsheng Zhao, Aihong Tang, Dichen Liu, Two-Level Control Method for DPFC Series Units Based on PLC Communication, 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 20–22 (2018), DOI: 10.1109/EI2.2018.8582109.

[22] Zhai X., Tang A., Zou X., Xu Zheng, Qiushi Xu, Research on DPFC Capacity and Parameter Design Method, IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA) (2020), DOI: 10.1109/ICIBA50161.2020.9277315.

[23] Pradhan A.K., Routray A., Banaja Mohanty, Maximum efficiency of flexible AC transmission systems, Electrical Power and Energy Systems, vol. 28, pp. 581–588 (2006), DOI: 10.1016/j.ijepes.2006.03.014.

[24] Seyed Abbas Taher, Muhammad Karim Amooshahi, New approach for optimal UPFC placement using hybrid immune algorithm in electric power systems, International Journal of Electrical Power and Energy Systems, vol. 43, iss. 1, pp. 899–909 (2012), DOI: 10.1016/j.ijepes.2012.05.064.


Go to article

Authors and Affiliations

Santosh Kumar Gupta
Jayant Mani Tripathi
Mrinal Ranjan
Ravi Kumar Gupta
Dheeraj Kumar Gupta
Download PDF Download RIS Download Bibtex

Abstract

Distributed generation is an issue intensively studied in recent years. It concerns, among others protection systems of distributed generation units connected to electric power grids. The main goal of this paper is to present the issue of functional reliability of selected passive loss of mains (LoM) protection systems, i.e. methods of detecting island operation in distribution power grids, which are implemented in PV inverters installed in sample MV and LV grids, typical for Polish conditions. First, different methods of detecting island operation have been distinguished and shortly characterized. Some problems concerning their action have also been presented. Then commonly used passive methods of island grid operation detection have been described. Next sample distribution grid has been presented and chosen disturbances modelled in the grid to test mentioned passive methods have been defined. For each of the determined type of disturbance the dynamic simulation has been carried out, as well as voltage and frequency plots for two selected RES nodes have been recorded and observed. All considered passive methods of island grid operation detection have been implemented in a Matlab/Simulink environment. Models of RoCoF, U/OVP and U/ OFP algorithms have been presented in diagrams. Then, results of carried out extensive studies have been shown in tables and discussed. The results are a consequence of a realized research project concerning electric grids in rural areas. Summary, final conclusions, and future research possibilities constitute the last part of the paper. The conclusions are mainly concentrated on evaluation of action of passive methods of island operation detection as well as possibility of using the methods in Polish conditions, particularly in rural distribution grids.

Go to article

Authors and Affiliations

M. Parol
M. Połecki

This page uses 'cookies'. Learn more