Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we investigate the implementation schemes of a single-scale wavelet transform processor using magnetostatic surface wave (MSSW) devices. There are three implementation schemes: the interdigital transducer, the meander line transducer and the grating transducer. Because the interdigital transducer has excellent properties, namely, good frequency characteristic and low insertion loss, we use the interdigital transducer as the implementation scheme of a single-scale wavelet transform processor using MSSW device.

In the paper, we also present the solutions to the three key problems: the direct coupling between the input transducer and the output transducer, the insertion loss, and the loss characteristics of the gyromagnetic film having an influence on the wavelet transform processor. There are two methods of reducing the direct coupling between the input transducer and the output transducer: increasing the distance between the input transducer and the output transducer, and placing a metal “wall” between the input transducer and the output transducer. There also are two methods of reducing the insertion loss of a single-scale wavelet transform processor using a MSSW device for scale: the appropriate thickness of the yttrium iron garnet (YIG) film and the uniform magnetic field.The smaller the ferromagnetic resonance linewidth of the gyromagnetic film , the smaller the magnetostatic wave propagation loss.

Go to article

Authors and Affiliations

Wenke Lu
Lun Kuang
Xiaozhou Lü
Changchun Zhu
Ting Zhang
Jingduan Zhang
Download PDF Download RIS Download Bibtex

Abstract

This paper presents how to design and simulate two different topologies of a bandpass (BP) rectangular waveguide filter using a direct coupled resonator technique operating at 12 GHz. The filters are characterized by a cross coupling (CM) which produces a single attenuation pole at finite frequency used to realize the bandpass response. The filter resonators provide3rd and 4th order designs with a pseudoelliptic response using High Frequency Structure Simulator (HFSS) simulator. Transmission zeros are obtained through coupling between the fundamental mode and high mode. The filter structures are validated leading to obtain transmission zeros close to the bandpass. The simulated waveguide filters with a central frequency exhibit an insertion loss of 0.4/0.3dB and a return loss of 20/23dB for the whole bandwidth ranging from 11.85GHz to 12.15GHz that show good electromagnetic responses for the simulated rectangular waveguide filters.
Go to article

Authors and Affiliations

Gouni Slimane
1
Damou Mehdi
Chetioui Mohammed
2
Boudkhil Abdelhakim
2

  1. Laboratory of Electronics, Signal Processing and Microwave and Laboratory Technology of Communication, Faculty of Technology University Tahar Moulay of Saida, Algeria
  2. Laboratory of Telecommunications, Abu Bakr Belkaid University of Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The lubrication of angular contact ball bearings under high-speed motion conditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG k-ε method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Go to article

Bibliography

[1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
[2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
[3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
[4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
[5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
[6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
[7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
[8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
[9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
[10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling. Lubricants, 10(3):39, 2022. doi: 10.3390/lubricants10030039.
[11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
[12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi: 10.3390/app13095660.
[13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
[14] D.Y. Dhande and D.W. Pande. A two-way {FSI} analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
[15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Go to article

Authors and Affiliations

Bowen Jiao
1
ORCID: ORCID
Qiang Bian
1
ORCID: ORCID
Xinghong Wang
1
Chunjiang Zhao
1
ORCID: ORCID
Ming Chen
1
Xiangyun Zhang
2

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  2. Luoyang Bearing Research Institute Co., Ltd, Luoyang, China

This page uses 'cookies'. Learn more