Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In Mexico, one of the principal natural resources is oil, however, the activity related to it has generated hydrocarbon spills on agricultural soils. The aim of this study was to evaluate the biodegradability of diesel by means of indigenous bacteria isolated from agricultural soil contaminated with 68 900 mg kg -1 diesel. We examined indigenous bacterial strains in agricultural soils contaminated with diesel from Acatzingo, Puebla, Mexico. We performed a physicochemical soil characterization, and a bacterial population quantification favoring sporulated bacteria of the genera Bacillus and Paenibacillus taken from the study site. Six bacterial strains were isolated. The identification was made based on the 16S rRNA gene and API systems. The tolerance and biodegradation capacity in diesel were determined at 4 000 to 24 000 mg L -1 of diesel. Residual concentrations of diesel were determined by GC-FID. Soil contaminated with diesel alters the concentrations of organic matter, phosphorus and nitrogen. Analysis of soil samples showed heat resistant bacterial populations of 106 cfu g -1 dry soil. Six strains from soil pollution were identified – Pseudomonas stutzeri M1CH1, Bacillus pumilus M1CH1b, Bacillus cereus M1CH10, Bacillus subtilis M1CH15a, and Paenibacillus lautus strains M1CH19 and M1CH27. These bacteria showed different degradation behavior. Bacillus pumilus M1HC1b and Paenibacillus lautus M1CH27 use diesel oil as the sole carbon source. Bacillus pumilus degraded high concentrations of diesel (24 000 mg L -1), while for Paenibacillus lautus it became toxic and the degradation was less.
Go to article

Authors and Affiliations

Amparo Mauricio-Gutiérrez
1
Rocío Machorro-Velázquez
2
Teresita Jiménez-Salgado
3
Candelario Vázquez-Crúz
3
María Patricia Sánchez-Alonso
3
Armando Tapia-Hernández
3

  1. CONACYT – Instituto de Ciencias, Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Mexico
  2. Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
  3. Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
Download PDF Download RIS Download Bibtex

Abstract

The uncertainty in the supply of crude oil, increasing the number of vehicles and rising air pollution, especially in urban areas, has prompted us to look for alternative fuels. It is understood that using Compressed Natural Gas (CNG) in IC engines could be a mid-term solution to these problems. It is well established that CNG has better combustion characteristics and low emissions compared to conventional gasoline and diesel fuel. In the present study, an experiment was conducted to evaluate the engine performance and exhaust emissions using various percentages of CNG in dual fuel mode. CNG was mixed in the intake manifold’s air stream, and diesel was injected after the compression of the CNG air mixture. This paper presents experimental results of 40%,60%, and 80% CNG in the air stream. Engine performance and emissions are presented and discussed at a speed of 1200 rpm to 1500 rpm in steps of 50 rpm. The results of the experiments showed that adding CNG to diesel engines in dual-fuel combustion significantly impacted performance and emissions. Compared to single diesel fuel combustion, dual fuel combustion increases brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) at all CNG energy shares and engine speeds. Carbon monoxide (CO) and hydrocarbon (HC) emissions were increased, while nitrogen oxide (NOX) and smoke opacity were decreased in dual fuel combustion compared to single diesel fuel.
Go to article

Bibliography

  1. Bari, S. & Hossain, S.N. (2019). Performance of a diesel engine run on diesel and natural gas in dual-fuel mode of operation. Energy Procedia, 160, pp. 215–222. DOI:10.1016/j.egypro.2019.02.139
  2. Gharehghani, A., Hosseini, R., Mirsalim, M., Jazayeri, S.A. & Yusaf, T. (2015). An experimental study on reactivity-controlled compression ignition engine fueled with biodiesel/natural gas. Energy, 89, pp. 558–567. DOI:10.1016/j.energy.2015.06.014
  3. Jamrozik, A., Tutak, W. & Grab-Rogaliński, K. (2019). An experimental study on the performance and emission of the diesel/CNG dual-fuel combustion mode in a stationary CI engine. Energies, 12(20), 3857. DOI:10.3390/en12203857
  4. Johnson, D.R., Heltzel, R., Nix, A.C., Clark, N. & Darzi, M.(2017). Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development. Applied energy, 206, pp. 739–750. DOI:10.1016/j.apenergy.2017.08.234
  5. Kalghatgi, G.T. (2014). The outlook for fuels for internal combustion engines. International Journal of Engine Research, 15(4), pp. 383–398. DOI:10.1177/1468087414526189
  6. Lee, S., Kim, C., Lee, S., Lee, J. & Kim, J. (2020). Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine. Fuel, 262, 116607. DOI:10.1016/j. fuel.2019.116607
  7. McTaggart-Cowan, G.P., Jones, H.L., Rogak, S.N., Bushe, W.K., Hill, P.G. & Munshi, S.R. (2005, January). The effects of high-pressure injection on a compression-ignition, direct injection of natural gas engine. In Internal combustion engine division fall technical conference, Vol. 47365, pp. 161–173. DOI:10.1115/ICEF2005-1213
  8. Pathak, S.K., Nayyar, A. & Goel, V. (2021). Optimization of EGR effects on performance and emission parameters of a dual fuel (Diesel+ CNG) CI engine: An experimental investigation. Fuel, 291, 120183. DOI:10.1016/j.fuel.2021.120183
  9. Rai, A.A., Bailkeri, N.K. & BR, S.R. (2021). Effect of injection timings on performance and emission Characteristics of CNG diesel dual fuel engine. Materials Today: Proceedings, 46, pp. 2758–2763. DOI:10.1016/j.matpr.2021.02.509
  10. Shim, E., Park, H. & Bae, C. (2018). Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine. Applied energy, 225, pp. 1068–1077. DOI:10.1016/j.apenergy.2018.05.060
  11. Stelmasiak, Z., Larisch, J., Pielecha, J. & Pietras, D. (2017). Particulate matter emission from dual fuel diesel engine fuelled with natural gas. Polish Maritime Research. DOI:10.1515/pomr-2017-0055
  12. Stelmasiak, Z., Larisch, J. & Pietras, D. (2017). Issues related to naturally aspirated and supercharged CI engines fueled with diesel oil and CNG gas. Combustion Engines, 56. DOI:10.19206/ CE-2017-205
  13. Tripathi, G., Sharma, P. & Dhar, A. (2020). Effect of methane augmentations on engine performance and emissions. Alexandria Engineering Journal, 59(1), pp. 429–439. DOI:10.1016/j. aej.2020.01.012
  14. Wang, Z., Zhang, F., Xia, Y., Wang, D., Xu, Y. & Du, G. (2021). Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel, 289, 119869. DOI:10.1016/j.fuel.2020.119869
  15. Wei, L. & Geng, P. (2016). A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Processing Technology, 142, pp. 264–278. DOI:10.1016/j. fuproc.2015.09.018
  16. Wyrwa, A. (2010). Towards an integrated assessment of environmental and human health impact of the energy sector in Poland. Archives of Environmental Protection, 36(1) pp. 41–48.
  17. Yousefi, A., Guo, H. & Birouk, M. (2018). Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions. Applied Energy, 229, pp. 375–388. DOI:10.1016/j. apenergy.2018.08.017
  18. Yousefi, A., Guo, H. & Birouk, M. (2019). Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel, 235, pp. 838–846. DOI:10.1016/j.fuel.2018.08.064
  19. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), pp. 108–119. DOI 10.24425/aep.2021.138469
Go to article

Authors and Affiliations

Neeraj Kumar
1
ORCID: ORCID
Bharat Bhushan Arora
ORCID: ORCID
Sagar Maji
1
ORCID: ORCID

  1. Delhi Technological University, Delhi, India
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to analyze diesel fuel consumption in Poland and identification of the causes of changes in the needs of individual sectors of the economy for this type of fuel. Time range of the researches covered from 2004 to 2014. Data from the Central Statistical Office (CSO) were the source material. In the years 2004-2014 diesel consumption in Poland was 111 553 thousand tons. In 2014 domestic consumption of diesel fuel was 11 203 thousand tons and it was more than 2 times higher than the level of consumption of this fuel in 2004. The highest consumption of diesel in Poland in the period took place in 2012. The increase in the consumption of diesel fuel in Poland had benefited from increased demand for diesel in transport, which became a result of an increased amount of transport services. The share of transport in the consumption of diesel fuel in Poland for the period 2004- 2014 was about 75%. Another area, which consumes the largest quantity of DF in Poland is agriculture. Consumption of this fuel in agriculture in the years 2004- 2014 increased by 7%. DF consumption in industry and the manufacturing sector it was variable. DF biggest consumption in these sectors of the economy in the period was recorded in 2004. The analyzes did not allow to identify the specific causes of changes in the use of DF in the industry and manufacturing. In transport it showed a relationship between the consumption of diesel fuel and the amount of transport work and the transported cargo.
Go to article

Authors and Affiliations

Jacek Skudlarski
Michał Smykla
Katarzyna Botwińska
Roman Krygul
Download PDF Download RIS Download Bibtex

Abstract

The most common chemical’s spills in typical transportation accidents are those with petroleum products such as diesel fuel, the consequence of which is an extensive pollution of the soil. In order to plan properly fuel recovery from the soil, it is important to gain information about the soil depth which may be affected by pollutant and to predict the pollutant concentration in different soil layers. This study deals with the impact of basic atmospheric conditions, i.e. air temperature and humidity on the diesel fuel migration through the soil. The diesel fuel was spilled into columns (L = 30 cm; D = 4.6 cm) filled with sandy and clay soil samples, and its concentrations at various depths were measured after 11 days under various air temperature (20 and 40°C) and relative humidity (30–100%) conditions. The effects observed were explained by understanding physical processes, such as fuel evaporation, diffusion and adsorption on soil grains. The increase in temperature results in higher fuel evaporation loss and its faster vertical migration. The relative humidity effect is less pronounced but more complex, and it depends much on the soil type.

Go to article

Authors and Affiliations

Mladen Vuruna
Zlate Veličković
Sreten Perić
Jovica Bogdanov
Negovan Ivanković
Mihael Bučko
Download PDF Download RIS Download Bibtex

Abstract

Surface wastewater pollution due to accidental runoff or release of oil or its products is a longstanding and common environmental problem. The aim of the study was to investigate the impact of concentrations of oil products (diesel) and suspended solids, the sorbent type, the water flow rate and the interfering factors (chlorides) on the dynamic sorption of diesel and to test regeneration of polypropylene after its use for sorption. The sorbents used for study included common wheat straw (Triticum aestivum), polypropylene and sorbents modified with hydrogen peroxide solution. Standard methods were used for the determination of the investigated parameters and an in-house procedure employing a gas chromatograph was used for the determination of diesel concentration. The following factors that impact the sorption of diesel were investigated during the study: diesel concentration, concentration of suspended solids; type of sorbent (common wheat straw (Triticum aestivum), wheat straw modified with hydrogen peroxide, and polypropylene), water flow rate; and influence of the interfering factors (chlorides). Filtration speed in the range of investigated speeds does not affect the efficiency of diesel removal. Removal efficiency does not depend on the concentration of diesel before the sorbent reaches its maximum sorption capacity. Filling containing 50% of polypropylene and 50% of wheat straw was used for the study. It was found that polypropylene and wheat straw do not remove chlorides and suspended solids from solution. The study found that the solution of hydrogen peroxide boosts the hydrophobic properties of common wheat straw, but does not affect the sorption of diesel. The recommended number of regenerations of polypropylene should be limited to two.
Go to article

Bibliography

  1. Adebajo, M.O., Frost, R.I., Kloprogge, J.T., Carmody, O. & Kokot, S. (2003). Porous materials for oil spill cleanup: A review of synthesis and absorbing properties, Journal of Porous Material, 3, pp. 159-170. DOI:10.1023/A:1027484117065
  2. Akpomie, K.G. & Conradie, J. (2021). Ultrasonic aided sorption of oil from oil-in-water emulsion onto oleophilic natural organic-silver nanocomposite, Chemical Engineering Research and Design, 165, pp. 12-24. DOI:10.1016/j.cherd.2020.10.019
  3. American Chemistry Council. (2018). (https://plastics.americanchemistry.com/Reports-and-Publications/National-Post-Consumer-Plastics-Bottle-Recycling-Report.pdf).
  4. Baig, N. & Saleh, T.A. (2019). Novel hydrophobic macroporous polypropylene monoliths for efficient separation of hydrocarbons, Composites Part B: Engineering, 173, pp. 106805. DOI:10.1016/j.compositesb.2019.05.016
  5. Baiseitov, D.A., Tulepov, M.I., Sassykova, L.R., Gabdrashova, S.E., Essen, G.A., Kudaibergenov, K.K. & Mansurov, Z.A. (2016). Sorption capacity of oil sorbent for the removal of thin films of oil, Bulgarian Chemical Communications, 3, pp. 446-450.
  6. Bayat, A., Aghamiri, S. F., Moheb, A. & Vakili-Nezhaad, G. (2005). Oil spill cleanup from sea water by sorbent materials, Journal of Chemical Engineering Technology, 12, pp. 1525-1528. DOI:10.1002/ceat.200407083
  7. Chandra, S., Sharma, R., Singh, K. & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with oil hydrocarbon, Annals of Microbiology, 63, pp. 417-431. DOI: 10.1007/s13213-012-0543-3
  8. Chaouki, Z., Zaitan, H., Nawdali M., Vasarevičius S. & Mažeikienė, A. (2020). Oil removal from refinery wastewater through adsorption on low cost natural biosorbents, Environmental engineering and management journal, 1, pp. 105-112. DOI:10.30638/eemj.2020.011
  9. Deschamps, G., Caruel, H., Borredon, M. E., Albasi, C., Riba, J. P., Bonnin, C. & Vignoles, C. (2003). Oil removal from water by sorption on hydrophobic cotton fibers. 2. Study of sorption properties in dynamic mode, Environmental science & technology, 21, pp. 5034-5039. DOI:10.1021/es020249b
  10. Gushchin, A.A., Grinevich, V.I., Gusev, G.I., Kvitkova, E.Y. & Rybkin, V.V. (2018). Removal of oil products from water using a combined process of sorption and plasma exposure to DBD, Plasma Chemistry and Plasma Processing, 5, pp. 1021-1033. DOI:10.1007/s11090-018-9912-4
  11. Hybská, H., Mitterpach, J., Samešová, D., Schwarz, M., Fialová, J. & Veverková, D. (2018). Assessment of ecotoxicological properties of oils in water, Archives of Environmental Protection, 4, pp. 31-37. DOI:10.24425/aep.2018.122300
  12. Kamble, S.P., Mangrulkar, P.A., Bansiwal, A.K. & Rayalu, S.S. (2007). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chemical Engineering Journal, 138, pp. 73–83. DOI:10.1016/j.cej.2007.05.030
  13. Karyab, H., Mirhosseini, M. Moradi, S. & Karimi, F.F. (2016). Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite, Journal of Inflammatory Disease, 3, pp. 32-26.
  14. Król, M. & Rożek, P. (2020). Sorption of oil products on the synthetic zeolite granules, Mineralogia, 51, pp. 1-7. DOI:10.2478/mipo-2020-0001
  15. Kwaśny, J. A., Kryłów, M. & Balcerzak, W. (2018). Oily wastewater treatment using a zirconia ceramic membrane–a literature review, Archives of Environmental Protection, 3, pp. 3-10. DOI: 10.24425/aep.2018.122293
  16. Li, G., Guo, S. & Hu, J. (2016). The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil, Chemical Engineering Journal, 286, pp. 191-197. DOI:10.1016/j.cej.2015.10.006
  17. Li, S., Wu, X., Cui, L., Zhang, Y., Luo, X., Zhang, Y. & Dai, Z. (2015). Utilization of modification polyester non-woven as an affordable sorbent for oil removal, Desalination and Water Treatment, 11, pp. 3054-3061. DOI:10.1080/19443994.2014.913264
  18. Lurchenko, V., Melnikova, O., Mikhalevich, N. & Borzenko, O. (2019). Surface wastewater treatment from various fractions of petroleum products from the territory of highway infrastructure facilities, Environmental problems, 2, pp. 74-81. DOI:10.23939/ep2019.02.074
  19. Maceiras, R., Alfonsin, V., Martinez, J. & de Rey, C.M.V. (2018). Remediation of diesel-contaminated soil by ultrasonic solvent extraction, International Journal of Environmental Research, 5, pp. 651-659. DOI:10.1007/s41742-018-0121-z
  20. Mandal, S. & Mayadevi, S. (2009). Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: euilibrium and regeneration studies, Journal of Hazardous Materials, 167, pp. 873-978. DOI:10.1016/j.jhazmat.2009.01.069
  21. Mauricio-Gutiérrez, A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C., Sánchez-Alonso, M. P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 4, pp. 56-69. DOI:10.24425/aep.2020.135765
  22. Mažeikiene, A. & Švediene, S. (2015). The suitability of natural and synthetic filter material for the removal of oil products from the aqueous media, Desalination and Water Treatment, 27, pp. 12487-12495. DOI:10.1080/19443994.2015.1053993
  23. Mažeikienė, A., Rimeika, M. & Švedienė, S. (2014). Oil removal from water by filtration, Journal of Environmental Engineering and Landscape Management, 1, pp. 64-70. DOI:10.3846/16486897.2014.885906
  24. Mohammadi, L., Rahdar, A., Bazrafshan, E., Dahmardeh, H., Susan, M., Hasan, A.B. & Kyzas, G.Z. (2020). Petroleum Hydrocarbon Removal from Wastewaters: A Review, Processes, 4, pp. 447. DOI:10.3390/pr8040447
  25. Moshe, S.B. & Rytwo, G. (2018). Thiamine-based organoclay for phenol removal from water, Applied Clay Science, 155, pp. 50-56. DOI:10.1016/j.clay.2018.01.003
  26. Paulauskiene, T. (2018). Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents, Environmental Science and Pollution Research, 10, pp. 9981-9991. DOI:10.1007/s11356-018-1316-8
  27. Quím, R.C. (2020). Highly porous polymeric composite with γ-Fe2O3 nanoparticles for oil products sorption, Revista Cubana de Química, 1, pp. 104-116.
  28. Rudkovsky, A.V., Fetisova, O.Y. & Chesnokov, N.V. (2016). Sorption of oil products by carbon sorbents from Siberian larch bark, Chemistry, 1, pp. 109. DOI:10.17516/1998-2836-2016-9-1-109-118
  29. Sari, G. L., Trihadiningrum, Y. & Ni'matuzahroh, N. (2018). Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo sub-district, Indonesia, Journal of Ecological Engineering, 2, pp.184-193. DOI:10.12911/22998993/82800
  30. The surface waste water management regulation (2019). (https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.295779/asr) (in Lithuanian)
  31. Thilagavathi, G. & Das, D. (2018). Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers, Journal of environmental management, 219, pp. 340-349. DOI:10.1016/j.jenvman.2018.04.107
  32. Varjani, S.J. Rana, D.P. Jain, A.K. Bateja, S. & Upasani, V.N. (2015). Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India, International Biodeterioration & Biodegradation, 103, pp. 116-124. DOI:10.12911/22998993/82800
  33. Vilūnas, A., Švedienė, S. & Mažeikienė, A. (2014). The research of sorbent usage for oil products removal from storm water runoff. (https://iicbe.org/upload/1891C0214017.pdf).
  34. Voronov, A.A, Malyshkina, E.S., Vialkova, E.I. & Maksimova, S.V. (2018). Development of the rational urban engineering systems for the surface wastewater treatment, Urban сonstruction and architecture, 3, pp. 43-50. DOI: 0.17673/Vestnik.2018.03.10
  35. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil, Archives of Environmental Protection, 1, pp. 73-79. DOI:10.1515/aep-2017-0004
  36. Xiao Jun, Z., Zhengang, L. & Min Dong, C. (2016). Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar, Journal of Bioresourse Technology, 1, pp. 262-267. DOI:10.1016/j.biortech.2016.02.032
  37. Yalcinkaya, F., Boyraz, E., Maryska, J. & Kucerova, K. (2020). A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials, 13, pp. 1-14. DOI:10.3390/ma13020493
Go to article

Authors and Affiliations

Dainius Paliulis
1

  1. Vilnius Gediminas Technical University, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

The article shows the methodology and calculation procedures based on Lagrange polynomial interpolation which were used to determine standard performance characteristics of the Polish production engine, type ANDORIA 4CTi90-1BE6. They allow to simplify the experimental research by maintaining a minimum number of measurement points and estimating the remaining data in an analytical way. The methods presented are convenient when it comes to the practical side because they eliminate the need for exploration of mathematical equations describing the various curves, which can be cumbersome and time consuming in the case of nonautomated accounts. The results of analysis were applied to actual experimental results, indicating sufficient accuracy of the resulting approximations. As a result, procedures may be used in bench testing of a similar profile, especially with repeated cycles of the experiment, such as optimization of operating parameters of combustion engines.

Go to article

Authors and Affiliations

Tomasz Stoeck
Karol Franciszek Abramek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a research work on the process of emulsion separation by filtration-coalescence method in the presence of solid particles. A polyester PBT coalescence medium was used in experiments of water removal from diesel fuel. Apart from parameters representing the geometry and inherent properties of coalescence filters, the additional emulsion constituents such as surfactants and solid particles also affect the process. These constituent can cover fibres and they can also influence emulsion properties. It has been experimentally confirmed that contrary to surface active compounds, which stabilise the emulsion, the presence of specific solid particles decreased the system stability. If surface active compounds are present in the system, the influence of solid particles is different at the same concentration level depending on their type. The destabilization of emulsion due to the presence of Arizona dust was more pronounced. Although the presence of particles mitigated the effect of surfactants, their deposition in the filter media oppositely affected the coalescence process depending on solid type. Oleophilic iron oxide particles improved the separation efficiency of water from diesel fuel, while Arizona test dust had a negative impact on the separation process performance.
Go to article

Authors and Affiliations

Andrzej Krasiński
1
Łukasz Sołtan
1
Jakub Kozyrski
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the effect of adding bio-components in the form of methyl esters of corn oil to the milesPLUS diesel oil on its fractional composition. The corn biofuel was produced in-house by using an own-design GW-200 reactor. The diesel fuel evaporated at temperatures ranging from 162 to 352oC. The addition of 7, 20 and 40% of a bio-component in principle does not affect the deterioration of the starting point distillation temperatures. They affect the temperature at the end of distillation to a greater extent, resulting in temperatures exceeding 360oC.
Go to article

Authors and Affiliations

Bolesław Pracuch
Grzegorz Wcisło
Download PDF Download RIS Download Bibtex

Abstract

Developed a method of a complex estimation of efficiency of the diesel particulate filter according to three criteria: the counting, the surface and the mass concentration of particulate matter considering their dispersion composition. The results of efficiency evaluation of a diesel particulate filter of freight car are presented using the proposed technique.
Go to article

Authors and Affiliations

A. Polivyanchuk
Download PDF Download RIS Download Bibtex

Abstract

In order to recover the low grade waste heat and increase system fuel economy for main engine 10S90ME-C9.2-TII(part load, exhaust gas bypass) installed on a 10000 TEU container ship, a non-cogeneration and single-pressure type of waste heat recovery system based on organic Rankine cycle is proposed. Organic compound candidates appropriate to the system are analyzed and selected. Thermodynamic model of the whole system and thermoeconomic optimization are performed. The saturated organic compound vapor mass flow rate, net electric power output, pinch point, thermal efficiency and exergy efficiency varied with different evaporating temperature are thermodynamically analyzed. The results of thermodynamic and thermoeconomic optimization indicate that the most appropriate organic compound candidate is R141b due to its highest exergy efficiency, biggest unit cost benefit and shortest payback time.

Go to article

Authors and Affiliations

Zheshu Ma
Yong Zhang
Junhua Wu
Download PDF Download RIS Download Bibtex

Abstract

Diesel generator engines operate in wide load modes; therefore, it is necessary to change the percentage of the mixture of diesel and biodiesel fuel depending on the operating mode of the engine; this ensures its technical performance at the required level in all operating modes, including starting and stopping the engine. This article describes an algorithm for the operation of a diesel generator and an algorithm for determining the composition of the fuel mixture. During the study, the ratio between the components of the mixture changed, taking into account the load modes of operation of the diesel generator, indicators of fuel supply and the formulation of the fuel mixture to ensure optimal values of technical and economic indicators. To assess the efficiency of the flow of working processes in a diesel cylinder, their duration was selected, which is estimated by the duration of the processes of fuel injection, evaporation and combustion. Using the dynamic regulation of the composition of the diesel and biodiesel fuel, the total fuel consumption increased by 5.9%, but the cost of purchasing the fuel is reduced by 10% (at prices as of November 2021) and by 14.6% (based on prices as of the beginning of 2022) compared to engine operation with diesel fuel. This confirms the expediency of using the dynamic adjustment of the composition of the fuel mixture. In addition, even higher economic indicators can be achieved by using an autonomous power plant with a diesel power capacity higher than the generator capacity.
Go to article

Authors and Affiliations

Ihor Kupchuk
1
ORCID: ORCID
Serhii Burlaka
1
ORCID: ORCID
Alexander Galushchak
2
ORCID: ORCID
Tetiana Yemchyk
3
ORCID: ORCID
Dmytro Galushchak
1
Yrii Prysiazhniuk
1
ORCID: ORCID

  1. Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
  2. Vinnytsia National Technical University, Ukraine
  3. Faculty of Economics and Entrepreneurship, Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an experimental method was utilized to investigate acoustic emission (AE) characteristics and to identify emission sources of the nonlinear AE signal on the cylinder body of a large low-speed two-stroke marine diesel engine in real-working conditions on the sea in misfiring and normal firing modes. Measurements focused on the AE signal acquired in a transverse direction in low-frequency (20–80 kHz), medium-frequency (100–400 kHz) and high-frequency (400–900 kHz) ranges. The collected signals were analyzed on the crank angle and crank angle-frequency domains. The results showed that all potential sources of the nonlinear AE signal could be mapped in the low-frequency range. However, only the AE signal caused by the combustion process at around the top dead center could be well-observed in the medium-to-high-frequency range. The findings also revealed that in normal firing conditions, the AE energy radiated by friction in the down-stroke period was smaller than in the up-stroke process due to gas-sealing forces. Moreover, the AE energy in the misfiring condition was higher than in the normal firing state. These outcomes considerably contributed understandings to characteristics of friction and wear around the mid-stroke area of the cylinder on a two-stroke marine diesel engine.
Go to article

Authors and Affiliations

Xuan Thin Dong
1
Manh Hung Nguyen
1

  1. Vietnam Maritime University Hai Phong, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

In some areas of the United States (US), asthma prevalence has reached historically unprecedented highs. Three peer-reviewed studies in New York City found prevalence rates among children from 25% to 39%. That is not true in all places. For example, prevalence in Miami, Florida, was estimated to be only 6-10%. A recent study in major cities in Georgia found only 8.5%. One study in California found asthma prevalence was unrelated to local concentrations of criterion pollutants. In the US, all criterion pollutants, including PM2.5, show a downward trend over the last two decades. These facts argue against any significant influence of criterion pollutants in this crisis.These facts suggest that an unrecognized ambient pollutant may be the cause. One important study in southern California in mid-summer measured pulmonary function in children as it was related to outdoor ozone pollution. They found a negative association; higher levels of ozone were associated with improved respiratory function. We call this a "Paradoxical Ozone Association" (POA). Further evidence for a POA appears in seven other studies in Los Angeles, London, Scotland, and southeastern Canada.One plausible explanation for these observations would be the production of methyl nitrite (MN) as an exhaust product of MTB E in gasoline. Unlike ozone, MN is rapidly destroyed by sunlight. All of the POA studies were done in regions with significant methyl ether in gasoline. This explanation is strengthened by the observation that a POA has not been seen in regions without ether in gasoline.A previous A WMA paper proposed a plausible chemical model predicting that MTBE in gasoline will create MN in the exhaust. MN is highly toxic and closely related alkyl nitrites are known to induce respiratory sensitivity in humans. Funding to measure MN has not been available
Go to article

Authors and Affiliations

Peter M. Joseph
Download PDF Download RIS Download Bibtex

Abstract

The paper suggests an improved method of active power distribution among the gas-diesel generators operating in parallel; the method involves the control of torque and the angular positions of their rotors. The use of the suggested approach to the solution of the active power distribution task in the presence of instability of drive motor speed provides the increase of autonomous power system operation efficacy and rising the power unit’s performance. The authors analyzed the causes of generation of low-frequency fluctuations of generator drive engine speed; in autonomous electric power systems, gas diesel generators are increasingly used as such generator drive engines. It is suggested to use the developed method and structure of the optical device for control of rotation period and the measurement of the generator rotor angle position characterized with high accuracy, as the sensor. The authors developed a schematic diagram of active power distribution among the generators operating in parallel, which uses the cross feedback for gas-powered diesel engine shafts momentum and the generator rotor angle position. They obtained experimental results confirming the efficiency of the suggested active power distribution method and its practical implementation.
Go to article

Bibliography

[1] Kamala, Srinivasarao, Chauhan, Priyesh, Panda, Sanjib, Wilson, Gary, Liu, Xiong, & Gupta, Amit. (2015). Optimal scheduling of diesel generators in offshore support vessels to minimize fuel consumption. In Proc. of the IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, Japan, 4726–4231. https://doi.org/10.1109/IECON.2015.7392838
[2] J.M. Prousalidis, G.J. Tsekouras, F. Kanellos. (2011). New challenges emerged from the development of more efficient electric energy generation units. In Proc. IEEE Electric Ship Technologies Symposium (ESTS). Alexandria, Virginia, 374–381. https://doi.org/10.1109/ESTS.2011.5770901
[3] A. Boretti, (2019). Advantages and Disadvantages of Diesel Single and Dual-Fuel Engines. Frontiers in Mechanical Engineering, 5 (64), 1–15. https://doi.org/10.3389/fmech.2019.00064
[4] V.M. Ryabenkij, A.O. Ushkarenko, V.I. Voskoboenko, (2008). Issledovanie avtokolebatelnykh proczessov chastoty napryazheniya gazodizel-generatorov. Sbornik nauchnykh trudov NUK, 4, 113–118.
[5] G. Evangelos, Giakoumis. (2016). Review of Some Methods for Improving Transient Response in Automotive Diesel Engines through Various Turbocharging Configurations. Frontiers in Mechanical Engineering, 2, 1–18. https://doi.org/10.3389/fmech.2016.00004
[6] V.M. Ryabenkij, A.O. Ushkarenko, V.I. Voskoboenko, (2009). Oczenka neravnomernosti raspredeleniya aktivnoj moshhnosti mezhdu generatorami pri parallelnoj rabote. Tekhnichna elektrodinamika, Tem. Vipusk, 3, 76–79.
[7] Adem, Celika, Mehmet, Yilmazb, & Omer Faruk, Yildizc. (2020). Improvement of diesel engine startability under low temperatures by vortex tubes. Energy Reports, 6, 17–27. https://doi.org/10.1016/j.egyr.2019.11.027
[8] Ra, Youngchul, Reitz, Rolf, Mcfarlane, Joanna, & Daw, Stuart. (2008). Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and BioDiesel Fuels. SAE International Journal of Fuels and Lubricants, 1, 703–718. https://doi.org/10.4271/2008-01-1379
[9] Yasin, Karagoz, Tarkan, Sandalci, Umit O, Koylu, Ahmet Selim, Dalkilic, & Somchai, Wongwises. (2016). Effect of the use of natural gas-diesel fuel mixture on performance, emissions, and combustion characteristics of a compression ignition engine. Advances in Mechanical Engineering, 8 (4), 1–13. https://doi.org/10.1177/1687814016643228
[10] Yoshihiko, Oishi, Riky Stepanus, Situmorang, Rio Arinedo, Sembiring, Hideki, Kawai, & Himsar, Ambarita. (2019). Performance, rate of heat release, and combustion stability of dual fuel mode in a small diesel engine. Energy Science and Engineering, 7, 1333–1351. https://doi.org/10.1002/ese3.352
[11] Irfan, Muhammad, Ermanu, A.H., Suhardi, Diding, Kasan, N., Effendy, Machmud, Pakaya, Ilham, & Faruq, Amrul. (2018). A design of electrical permanent magnet generator for rural area wind power plant. International Journal of Power Electronics and Drive Systems, 9, 269–275. https://doi.org/10.11591/ijpeds.v9n1.pp269-275
[12] Boonyang, Plangklang, Sittichai, Kantawong, & Akeratana, Noppakant. (2013). Study of Generator Mode on Permanent Magnet Synchronous Motor (PMSM) for Application on Elevator Energy Regenerative Unit (EERU). Energy Procedia, 34, 382–389. https://doi.org/10.1016/j.egypro.2013.06.766
[13] A. Ablesimov, V. Yatskovsky, (2013). Stability of automatic control systems. Electronics and Control Systems, 4 (38), 54–59. https://doi.org/10.18372/1990-5548.38.7278
[14] Cheikh, Mansoura, Abdelhamid, Bounifa, Abdelkader, Arisa, & Françoise, Gaillardb. (2001). Gas-Diesel (dual-fuel) modeling in diesel engine environment. International Journal of Thermal Sciences, 40 (4), 409–424. https://doi.org/10.1016/S1290-0729(01)01223-6
[15] V. Ryabenkiy, O. Ushkarenko, (2012). Optimization of the Controller`S Parameters of the Gas-diesel Generator Unit. In Proc. International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012). Lviv, Ukraine, 460–461.
[16] Haes Alhelou, Hassan, Hamedani, Golshan, Mohamad, Esmail, Njenda, Takawira, & Siano, Pierluigi. (2019). A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 12, 1–28. https://doi.org/10.3390/en12040682.
[17] V. Ryabenkiy, A. Ushkarenko, Al-Suod, Mahmoud Mohammad. (2012). Reduction of Frequency Oscillation of the Gas-diesel Generator Units. In Proc. International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012). Lviv, Ukraine, 447–448.
[18] Mahmoud Mohammad Salem, Al-suod, A.O. Ushkarenko, O.I. Dorogan, (2015). Optimization of the structure of diesel-generator units of ship power system. International Journal of Advanced Computer Research, 5 (18), 68–74.


Go to article

Authors and Affiliations

Abdullah M. Eial Awwad
1
Mahmoud M. S. Al-Suod
1
Alaa M. Al-Quteimat
1
O.O. Ushkarenko
2
Atia AlHawamleh
1

  1. Department of Electrical Power Engineering and Mechatronics, Tafila Technical University, Tafila, Jordan
  2. Department of Electrical and Electronics Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Diesel engine components in the combustion chamber have been exposed to cyclic loadings under environmental effects, including high temperatures and corrosive fluids. Therefore, knowing the corrosion-fatigue behavior of materials is essential for designer engineers. In this article, pure fatigue and corrosion-fatigue behaviors of the piston aluminum alloy have been experimentally investigated. For such an objective, as-cast and pre-corrosive standard samples were tested by the rotary bending fatigue machine, under 4 stress levels. Some specimens were exposed to the corrosive fluid with 0.00235 % of the sulfuric acid for 100 and 200 hours. The results showed higher weight losses for 200 hours immersion times. As another result, it could be concluded that the lifetime decreased in pre-corrosive samples for both 100 and 200 hours of the immersion time, compared to that of as-cast specimens. However, such a lifetime reduction was more significant for 200 hours of the immersion time, especially within the high-cycle fatigue regime (or lower stress levels). Under high stress levels, both pre-corrosive sample types had almost similar behaviors. The field-emission scanning electron microscopy images of specimen fracture surfaces indicated that the brittle region of the fractured surface was larger for specimens after the 200 hours of corrosion-fatigue testing than the other specimen.
Go to article

Bibliography

[1] Li, Z., Li, Ch., Liu, Y., Yu, L., Guo, Q. & Li, H. (2016). Effect of heat treatment on microstructure and mechanical property of Ale10%Mg2Si alloy. Journal of Alloys and Compounds. 663, 16-19. DOI: http://dx.doi.org/10.1016/ j.jallcom.2015.12.128.
[2] Wang, M., Pang, J.C., Li, S.X. & Zhang, Z.F. (2017). Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering A. 704, 480-492. DOI: http://dx.doi.org/ 10.1016/j.msea.2017.08.014.
[3] Azadi, M. (2017). Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect. International Journal of Fatigue. 99, 303-314. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2016.12.001.
[4] Guerin, M., Alexis, J., Andrieu, E., Blanc, C. & Odemer, G. (2015). Corrosion-fatigue lifetime of Aluminum-Copper-Lithium alloy 2050 in chloride solution. Materials and Design 87, 681-69. DOI: http://dx.doi.org/10.1016/j.matdes. 2015.08.003.
[5] Chen, Y., Zhou, J., Liu, Ch. & Wang, F. (2017). Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy. International Journal of Fatigue. 108, 35-46. DOI: https://doi.org/10.1016/ j.ijfatigue.2017.11.008.
[6] Chen, Y., Liu, Ch., Zhou, J. & Wang, X. (2017). Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. International Journal of Fatigue. 98, 269-278. DOI: http://dx.doi.org/10.1016/j.ijfatigue. 2017.02.004.
[7] Chen, Y., Liu, Ch., Zhou, J. & Wang, F. (2019). Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy. Journal of Alloys and Compounds. 772, 1-14. DOI: https://doi.org/10.1016/ j.jallcom.2018.08.282.
[8] Rodriguez, R.I., Jordon, J.B., Allison, P.G., Rushing, T. & Garcia, L. (2019). Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Material Science and Engineering. 742, 255-268. DOI: https://doi.org/10.1016/j.msea.2018.11.020.
[9] Mishra, R.K. (2020). Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Materials Today: Proceedings. 25(4), 602-609. DOI: https://doi.org/10.1016/j.matpr.2019.07.375.
[10] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering A. 788, 139497. DOI: https://doi.org/10.1016/j.msea.2020.139497.
[11] Metallic materials-rotating bar bending fatigue testing. (2010). Standard No. ISO-1143, ISO International Standard.
[12] Aroo, H., Parast, M.S.A., Azadi, M. & Azadi, M. (2020). Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis. 11th International Conference on Internal Combustion Engines and Oil, Tehran, Iran (in Persian).
[13] Azadi, M., Zolfaghari, M., Rezanezhad, S. & Azadi, M. (2018). Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Applied Physics A. 124(5), 377. DOI: https://doi.org/10.1007/s12540-019-00498-7
[14] Azadi, M. & Aroo, H. (2020). Temperature effect on creep and fracture behaviors of nano-SiO2-composite and alsi12cu3ni2mgfe aluminum alloy. International Journal of Engineering. 33(8), 1579-1589. DOI: 10.5829/ije. 2020.33.08b.16.
[15] Azadi, M. & Aroo, H. (2019). Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Material Research Express. 6, 115020. DOI: https://doi.org/10.1088/2053-1591/ab455f.
[16] Zainon, F., Rafezi Ahmad, K. & Daud, R. (2015). Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332. Applied Mechanics and Materials. 786, 18-22. DOI: 10.4028/www.scientific.net/AMM.786.18.
[17] Han, L., Sui, Y., Wang, Q., Wang, K. & Jiang, Y. (2017). Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. Journal of Alloys and Compounds. 695, 1566-1572. DOI: https://doi.org/10.1016/ S1003-6326(20)65333-X.
[18] Humbertjean, A. & Beck, T. (2013). Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. International Journal of Fatigue. 53, 67-74. DOI: 10.1016/j.ijfatigue. 2011.09.017.
[19] Mollaei, M. Azadi, M. Tavakoli, H. (2018). A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing. Applied Physics A, 124, 504. https://doi.org/10.1007/s00339-018-1929-2
[20] Arab, M., Azadi, M. & Mirzaee, O. (2020). Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites, Materials Chemistry and Physics, 253, 123259. DOI: https://doi.org/10.1016/j.matchemphys.2020.123259.
Go to article

Authors and Affiliations

M. Azadi
1
ORCID: ORCID
H. Aroo
1
M.. Azadi
1
M.S.A. Parast
1

  1. Semnan University, Iran

This page uses 'cookies'. Learn more