Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Multiferroic composites are very promising materials because of their applicability because the magnetoelectric effect occurs in them. The subject of the study were two multiferroic ceramic composites: leaded obtained from powder of the composition PbFe0.5Nb0.5O3 and ferrite powder of the composition Ni0.64Zn0.36Fe2O4 and unleaded which was obtained from the powder of the composition BaFe0.5Nb0.5O3 and the same ferrite powder Ni0.64Zn0.36Fe2O4. For the both multiferroic materials the following studies were conducted: SEM, BSE, EDS, XRD and the temperature dependence of dielectric constant ε(T). Using the previously developed method of calculating the magnetoelectric coupling factor (g), based on dielectric measurements, the magnitude of the magnetoelectric effect in the multiferroic composites was determined.
Go to article

Authors and Affiliations

J.A. Bartkowska
D. Bochenek
P. Niemiec
Download PDF Download RIS Download Bibtex

Abstract

In this study, lead-free bismuth sodium titanate (BNT; Bi0.5Na0.5TiO3) powder was synthesized using wet precipitation. The sintering behavior and dielectric properties of the BNT ceramics were investigated in terms of the sintering temperature. Titanium isopropoxide, sodium nitrate, and bismuth nitrate were used as starting materials. A titanium peroxo complex (TPC) solution was synthesized using titanium hydroxide, nitric acid, and hydrogen peroxide. A clear Bi-Na-Ti precursor solution was obtained by mixing the TPC, sodium, and bismuth nitrate solutions. The pH of the precursor solution was increased to 9 using NaOH and a white powder was precipitated. A spherical and pyrochlore phase-free BNT powders were obtained by calcining the white precipitate above 600°C for 3 h. Particle size analysis and SEM observations revealed that the BNT powder calcined at 700°C exhibited homogeneous distribution with particle size less than 300 nm. The sinterability of the BNT ceramic prepared through wet precipitation was significantly enhanced compared to that of the BNT powder prepared via the solid-state reaction of sodium carbonate, bismuth oxide, and titanium oxide powders.
Go to article

Authors and Affiliations

Islam Takiul
1
ORCID: ORCID
Sanghaw Lee
1
ORCID: ORCID
Haejin Hwang
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
Download PDF Download RIS Download Bibtex

Abstract

The five-layer Aurivillius type structures with the general chemical formula Bi5Fe2-xMnxTi3O18, where x = 0, 0.6, 1.2 have been synthesized and tested. The SEM studies showed a significant increase in grain size in the manganese-modified Aurivillius type ceramic material (for x = 1.2). The increase in the amount of manganese ions (Mn3+) affects the decrease in the temperature at which the relaxation processes take place. Namely from 525 K (1 kHz) and 725 K (1 MHz) for BFT sample (x = 0) to 355 K (1 kHz) and 565 K (1 MHz) for BFM12T sample (x = 1.2). Using the Arrhenius’s law and the Vogel-Fulcher’s relationship the activation energy (Ea) and the relaxation time have been calculated. The value of Ea increases with the increase of the Mn amount from 0.737 eV (for x = 0) to 0.915 eV (for x = 1.2).

Go to article

Authors and Affiliations

J.A. Bartkowska
D. Bochenek
Download PDF Download RIS Download Bibtex

Abstract

A geo-radar method is used for detection of underground installations with the use of electromagnetic waves. Results of investigations of installations depend on physical properties of soil media, which properties result in suppression, reflection and refraction of electromagnetic waves. Three parameters, electric permittivity E, magnetic permittivity μ and the medium conductivity a play the major role in establishing electric features of a material medium. Suppression of the electromagnetic wave has the basic influence on detection of underground installations with the use of the geo-radar, and, in particular, on the depth range of the method. Relation between designing parameters of the geo-radar equipment and its depth range is determined by the basic equation of the geo-radar method. Solution of the basic equation of the geo-radar method for the needs of detection of underground installations requires performing experimental measurements. Measurements of the maximum depth of detection of underground installations with the use of the geo-radar have been performed in media of known physical properties, i.e. in the air, water and water solutions of NaCl of various concentrations. Two steel pipes of diameters of</!= 0.03 m and O. l Om were the objects for testing. Measurements were performed with the use of antennae of frequencies of !OOO MHz and 200 MHz. The results obtained in the form of echograms were analysed in order to determine the maximum distances for which the tested pipes were recorded. Experiments allowed to state that the maximum measurements of the depth range of the geo-radar equipment is rapidly decreased with the decrease of the background's specific resistance below 50 Qm. An increase of the soil resistance above 500 Q m results in slight increase of the depth range of measurements. Tests and analyses performed concerned homogenous media, i.e. metal installations, for which the electromagnetic wave is fully reflected.
Go to article

Authors and Affiliations

Wiesław Nawrocki
Zbigniew Piasek
Download PDF Download RIS Download Bibtex

Abstract

From the construction made in the “white box” technology, first of all tightness is required - on the structural elements there should not be any cracks or scratches, through which water could penetrate, which in consequence may lead to deformation of structural elements and even loosing of their load-bearing capacity. Among the methods enabling the location of weakened places in watertight concrete, the ground penetrating radar (GPR) method is effective because the local occurrence of water in the structure evokes a clear and unambiguous anomaly on the radargram. In addition, the GPR method allows you to indicate places where water flows without the necessity of excluding the object from use and interference in the construction layers. The designation of such locations will make it possible to undertake technical activities that can facilitate the takeover of water and thus ensure the desired load-bearing capacity and usability of the object. Using the GPR method, you can also designate places that have already been deformed – discontinuities or breaking. The article presents a case study of investigations that determine the causes of leakage of tunnels made in the “white box” technology in: twice within the bottom slab of the tunnel (1 GHz air-coupled and 400 MHz ground-coupled antenna) and once in the case of tunnel walls (1.6 GHz ground-coupled antenna).

Go to article

Authors and Affiliations

Anna Lejzerowicz
ORCID: ORCID
Małgorzata Wutke

This page uses 'cookies'. Learn more