Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A i m s: Gestational diabetes mellitus (GDM) is an emerging worldwide problem. Changes in clinical characteristics of women affected by GDM in a long-term perspective are still not properly investigated. We aimed to examine such changes over a decade in a retrospective single-center analysis.
M e t h o d s: The medical documentation from Department of Metabolic Diseases, Krakow, Poland was analyzed. We included 633 women consecutively diagnosed with GDM in one of three time intervals: 2007–2008 (N = 157), 2012–2013 (N = 272), 2016–2017 (N = 234). Statistical analyses were performed.
R e s u l t s: Comparison of the three groups identified differences in the mean age of women at the GDM diagnosis (30.7 ± 5.0 years vs. 31.2 ± 4.7 vs. 32.5 ± 4.7, respectively, starting from the earliest 2007–2008 group), pregnancy week at GDM diagnosis (28.0 ± 5.3 wks. vs. 25.9 ± 4.9 vs. 23.4 ± 6.8), the proportion of women diagnosed before the 24th week of pregnancy (12.8% vs. 16.5% vs. 31.3%), and gestational weight gain (12.4 ± 5.0 kg vs. 10.4 ± 5.2 vs. 10.0 ± 5.7); (p = 0.001 or less for all comparisons). We also found differences for glucose values on fasting and at 2 hours with the highest (0 min) and lowest level (120 min) in the 2016–2017, respectively. Finally, a borderline difference for the weight, but not for BMI, was found (64.1 ± 14.1 kg vs. 66.2 ± 13.1 vs. 67.8 ± 15.6; p = 0.04). Differences were also identified in the post hoc analysis between cohorts.
C o n c l u s i o n: This retrospective analysis illustrates changes in characteristics of women with GDM occurring over the period of decade in Poland. They likely result from both epidemiological trends and modifications of the WHO criteria for the GDM diagnosis.
Go to article

Bibliography

1. McIntyre H.D., Catalano P., Zhang C., Desoye G., Mathiesen E.R., Damm P.: Gestational diabetes mellitus. Nat Rev Dis Primers. 2019; 5: 47. JAMA 1967; 200: 1129–1131.
2. Lowe L.P., Metzger B.E., Dyer A.R., et al.: Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations of maternal A1C and glucose with pregnancy outcomes. Diabetes Care. 2012; 35: 574–580.
3. Gortazar L., Flores-Le Roux J.A., Benaiges D., et al.: Trends in prevalence of gestational diabetes and perinatal outcomes in Catalonia, Spain, 2006 to 2015: the Diagestcat Study. Diabetes Metab Res Rev. 2019; 35: e3151.
4. Cade T.J., Polyakov A., Brennecke S.P.: Implications of the introduction of new criteria for the diagnosis of gestational diabetes: a health outcome and cost of care analysis. BMJ Open. 2019; 9: e023293.
5. Mack L.R., Tomich P.G.: Gestational Diabetes: Diagnosis, Classification and Clinical Care. Obstet. Gynecol. Clin. North Am. 2017; 44: 207–217.
6. Egan A.M., Vellinga A., Harreiter J., et al.: Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 2017; 60: 1913– 1921.
7. Lean S.C., Derricott H., Jones R.L., et al.: Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS One. 2017; 12: e0186287.
8. Chiefari E., Arcidiacono B., Foti D., et al.: Gestational diabetes mellitus: an updated overview. J Endocrinol Invest. 2017; 40:.899–909.
9. Skupień J., Cyganek K., Małecki M.T.: Diabetic pregnancy: an overview of current guidelines and clinical practice. Curr Opin Obstet Gynecol. 2014; 26: 431–417.
10. Behboudi-Gandevani S., Amiri M., Bidhendi Yarandi R., et al.: The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019; 11: 11.
11. HAPO Study Cooperative Research Group, Metzger B.E., Lowe L.P., et al.: Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008; 358: 1991–2002.
12. World Health Organization: Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization guideline. Diabetes Res Clin Pract. 2014; 103: 341–363.
13. 2020 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clinical Diabetology, supplement A, 2014.
14. Rybińska A.: Motherhood after the age of 35 in Poland. Studia Demogr. 2014; 1: 7–15.
15. Molina-García L., Hidalgo-Ruiz M., Cocera-Ruíz E.M., et al.: The delay of motherhood: Reasons, determinants, time used to achieve pregnancy, and maternal anxiety level. PLoS One. 2019; 14: e0227063.
16. Matthews T.J., Hamilton B.E.: First births to older women continue to rise. NCHS Data Brief. 2014; 152: 1–8.
17. Hammarberg K., Clarke V.E.: Reasons for delaying childbearing — a survey of women aged over 35 years seeking assisted reproductive technology. Aust Fam Physician. 2005; 34 (3): 187–206.
18. Kim M., Park J., Kim S.H., et al.: The trends and risk factors to predict adverse outcomes in gestational diabetes mellitus: a 10-year experience from 2006 to 2015 in a single tertiary center. Obstet Gynecol Sci. 2018; 61: 309–318.
19. Wender-Ożegowska E., Bomba-Opoń D., Brązert J., et al.: The Polish Society of Gynaecologists and Obstetricians standards for the management of patients with diabetes. Ginekologia i Perinatologia Praktyczna. 2017; 2: 215–229.
20. Egan A.M., Dunne F.P.: Epidemiology of Gestational and Pregestational Diabetes Mellitus. In: Lapolla A., Metzger B.E. (eds.): Gestational Diabetes. A Decade after the HAPO Study. Front Diabetes. Basel, Karger, 2020; 28: 1–10.
21. Egan A.M., Dennedy M.C., Al-Ramli W., et al.: ATLANTIC-DIP: excessive gestational weight gain and pregnancy outcomes in women with gestational or pregestational diabetes mellitus. J Clin Endocrinol Metab. 2014; 99: 212–219.
22. Ferreira L.A.P., Piccinato C.A., Cordioli E., et al.: Pregestational body mass index, weight gain during pregnancy and perinatal outcome: a retrospective descriptive study. Einstein (Sao Paulo). 2019; 18: eAO4851.
23. Brown J., Kapurubandara S., McGee T.M.: Confounding effect of ethnic diversity on booking-in body mass index and prevalence of gestational diabetes and hypertensive disorders in pregnant women in western Sydney 1997–2016. Aust N Z J Obstet Gynaecol. 2020; 60: 369–375.
24. Lavery J.A., Friedman A.M., Keyes K.M., et al.: Gestational diabetes in the United States: temporal changes in prevalence rates between 1979 and 2010. BJOG. 2017; 124: 804–813.
25. Fitzpatrick K.E., Tuffnell D., Kurinczuk J.J., et al.: Pregnancy at very advanced maternal age: a UK population-based cohort study. BJOG. 2017; 124: 1097–1106.
Go to article

Authors and Affiliations

Magdalena Wilk
1 2
Katarzyna Cyganek
1 2
Bartłomiej Matejko
1 2
Sabina Krzyżowska
1 2
Izabela Lasoń
1 2
Barbara Katra
1 2
Joanna Zięba-Parkitny
2
Przemysław Witek
1 2
Maciej T. Małecki
1 2

  1. Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
  2. University Hospital, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Diabetes is characterized by high blood glucose level termed hyperglycemia affecting skeletal muscle structure and function by an unclear molecular mechanism. This study aimed to investigate the effect and underlying mechanism(s) of hyperglycemia on skeletal muscle both in vitro and in vivo. Treatment with hyperglycemic condition (25 mM) for 48 h significantly inhibited C2C12 myoblast proliferation detected by MTT assay whilst flow cytometry revealed an interruption of the cell cycle at subG1 and G2/M phases. An exposure to hyperglycemic condition significantly decreased the myosin heavy chain (MHC) protein expression in the differentiated myotube and tibialis anterior (TA) muscle of Wistar rats. In addition, the muscle cross-section area (MCA) of TA muscle in diabetic rats were significantly decreased compared to the non-diabetic control. Western blotting analysis of C2C12 myoblasts and differentiated myotubes revealed the increased expressions of cleaved-caspase-9 and cleaved-caspase-3, but not cleaved-caspase-8. Of note, these caspases in the TA muscles were not changed under hyperglycemic condition. Quantitative real-time polymerase chain reaction (qRT-PCR) of the hyperglycemic myoblasts and TA muscles revealed modulation of the gene expression of sirtuins (SIRTs). In C2C12 myoblasts, the expressions of SIRT1, SIRT2 and SIRT4 were upregulated whilst SIRT7 was downregulated. Meanwhile, the expressions of SIRT1, SIRT2 in TA muscles were upregulated whilst SIRT4 was downregulated. Taken together, this study showed that hyperglycemia induced cell cycle arrest and apoptosis in myoblasts, and protein degradation and atrophy in skeletal muscle most likely via modulation of SIRTs gene expression.
Go to article

Bibliography


Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M (2018) Antioxidant effect of myricitrin on hyperglycemia-induced oxida-tive stress in C2C12 cell. Cell Stress Chaperones 23: 773-781.

Arora A, Dey CS (2014) SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochim Biophys Acta 1842: 1372-1378.

Ban N, Ozawa Y, Inaba T, Miyake S, Watanabe M, Shinmura K, Tsubota K (2013) Light-dark condition regulates sirtuin mRNA levels in the retina. Exp Gerontol 48: 1212-1217.

Buranasin P, Mizutani K, Iwasaki K, Pawaputanon Na, Mahasarakham C, Kido D, Takeda K, Izumi Y (2018) High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One 13: e0201855.

Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25: 138-145.

Chao SC, Chen YJ, Huang KH, Kuo KL, Yang TH, Huang KY, Wang CC, Tang CH, Yang RS, Liu SH (2017) Induction of sirtuin-1 sig-naling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep 7: 3180.

Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y, Huang J (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tu-mor-suppressive function in cancer. Cell Death Dis 5: e1047.

Doktorova TY, Ellinger-Ziegelbauer H, Vinken M, Vanhaecke T, van Delft J, Kleinjans J, Ahr HJ, Rogiers V (2012) Comparison of geno-toxicant-modified transcriptomic responses in conventional and epigenetically stabilized primary rat hepatocytes with in vivo rat liver data. Arch Toxicol 86: 1703-1715.

Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, Balbarini A, Prato SD, Pucci L (2010) Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Micro-vasc Res 80: 332-338.

Galban VD, Evangelista EA, Migliorini RH, do Carmo Kettelhut I (2001) Role of ubiquitin-proteasome-dependent proteolytic process in degradation of muscle protein from diabetic rabbits. Mol Cell Biochem 225: 35-41.

Hirata Y, Nomura K, Senga Y, Okada Y, Kobayashi K, Okamoto S, Minokoshi Y, Imamura M, Takeda S, Hosooka T, Ogawa W (2019) Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 4: e124952.

Linxi Z, Guirong Z, Xue W, Gang S (2015) The Effect of high glucose on proliferation and expression of correlation factors of MG63 osteo-blasts. J Hard Tissue Biol 24: 143-146.

Liu L, Arun A, Ellis L, Peritore C, Donmez G (2014) SIRT2 enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci 6: 184.

Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F (2010) Resveratrol inhibits mTOR signaling by promot-ing the interaction between mTOR and DEPTOR. J Biol Chem 285: 36387-36394.

Luo M, Liu Z, Hao H, Lu T, Chen M, Lei M, Verfaillie CM, Liu Z (2012) High glucose facilitates cell cycle arrest of rat bone marrow mul-tipotent adult progenitor cells through transforming growth factor-β1 and extracellular signal-regulated kinase 1/2 signalling without changing Oct4 expression. Clin Exp Pharmacol Physiol 39: 843-851.

Luo W, Ai L, Wang BF, Zhou Y (2019) High glucose inhibits myogenesis and induces insulin resistance by down-regulating AKT signaling. Biomed Pharmacother 120: 109498.

Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, Komuro I (2009) Protective role of SIRT1 in diabetic vascular dysfunc-tion. Arterioscler Thromb Vasc Biol 29: 889-894.

Park SH, Choi HJ, Lee JH, Woo CH, Kim JH, Han HJ (2001) High glucose inhibits renal proximal tubule cell proliferation and involves PKC, oxidative stress, and TGF-β1. Kidney Int 59: 1695-1705.

Porreca I, D’Angelo F, De Franceschi L, Mattè A, Ceccarelli M, Iolascon A, Zamò A, Russo F, Ravo M, Tarallo R, Scarfò M, Weisz A, De Felice M, Mallardo M, Ambrosino C (2016) Pesticide toxicogenomics across scales: in vitro transcriptome predicts mechanisms and outcomes of exposure in vivo. Sci Rep 6: 38131.

Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V, Millay DP (2017) Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun 8: 15665.

Rathbone CR, Booth FW, Lees SJ (2009) Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 88: 35-44.

Reddy SS, Shruthi K, Joy D, Reddy GB (2019) 4-PBA prevents diabetic muscle atrophy in rats by modulating ER stress response and ubiq-uitin-proteasome system. Chem Biol Interact 306: 70-77.

Samant SA, Kanwal A, Pillai VB, Bao R, Gupta MP (2017) The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep 7: 11877.

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399-412.

Schartner E, Sabbir MG, Saleh A, Silva RV, Chowdhury SR, Smith DR, Fernyhough P (2018) High glucose concentration suppresses a SIRT2 regulated pathway that enhances neurite outgrowth in cultured adult sensory neurons. Exp Neurol 309: 134-147.

Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE (2015) Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14: 511-523.

Shi JX, Wang QJ, Li H, Huang Q (2017) SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med 13: 342-348.

Surinlert P, Kongthong N, Watthanard M, Sae-lao T, Sookbangnop P, Pholpramool C, Tipbunjong C (2020) Styrene oxide caused cell cycle arrest and abolished myogenic differentiation of C2C12 myoblasts. J Toxicol 2020: 1807126.

Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T. Bober E (2008) Sirt7 increases stress resistance of cardio-myocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102: 703-710.

Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35: 669-675.

Wang F, Nguyen M, Qin XF, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6: 505–514.

Wang S, Wang J, Zhao A, Li J (2017) SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochon-drial dysfunction in human endothelial cells. Mol Med Rep 16: 3331-3338.

Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147: 4160-4168.

Wronska A, Lawniczak A, Wierzbicki PM, Kmiec Z (2016) Age-related changes in sirtuin 7 expression in calorie-restricted and refed rats. Gerontology 62: 304-310.

Zhang HH, Ma XJ, Wu LN, Zhao YY, Zhang PY, Zhang YH, Shao MW, Liu F, Li F, Qin GJ (2015) SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells. Exp Biol Med (Maywood) 240: 557-565.
Go to article

Authors and Affiliations

P. Surinlert
1
T. Thitiphatphuvanon
2
W. Khimmaktong
3
C. Pholpramool
4
C. Tipbunjong
3 5

  1. Chulabhorn International College of Medicine, Thammasat University, Pathum-Thani 12120, Thailand
  2. Faculty of Medicine, Siam University, Bangkok 10160, Thailand
  3. Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
  4. Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
  5. Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand
Download PDF Download RIS Download Bibtex

Abstract

I n t r o d u c t i o n: Peripheral arterial occlusive disease (PAOD) is a disease with worldwide increasing occurrence. Diabetic patients are greatly exposed on the risk of PAOD and its complications. The aim of the study was to check the influence of preoperative HbA1C on the outcomes of patients with diabetes undergoing PAOD related endovascular treatment.

M a t e r i a l a n d Me t h o d s: The study was conducted among 59 patients with PAOD referred from the diabetic foot outpatient for endovascular treatment. They were included in one-year observation based on follow-up visits in 1, 3, 6 and 12 months after angioplasty and divided into 2 groups basing on their preoperative glycaemia. Th e clinical condition of the lower limbs was assessed by use of the Rutherford classification, ankle-brachial index (ABI) and toe-brachial index (TBI). Changes in patients’ quality of life (QoL) were also evaluated.

R e s u l t s: Reintervention within 12 months were less frequent in patients with HbA1C ≤8.0% than in HbA1C >8.0% patients (9.09% vs. 35.48%, p = 0.03). TBI of the treated limb was lower in patients with elevated than in patients with proper glycaemia at 6 month [0.2 (0.0–0.38) vs. 0.38 (0.31–0.46); p <0.008] and 12 month follow-up [0.17 (0.0–0.27) vs. 0.32 (0.25–0.38); p <0,001]. The rate of healed ulcerations after 6 months was higher in patients HbA1C ≤8.0% (45.0% vs. 16.13%; p = 0.02) and they had significantly greater improvement of QoL.

C on c l u s i o n: Results of this study shows that preoperative level of glycaemia is an important factor for long-term prognosis in diabetic patients with PAOD. Elevated HbA1C level decreases significantly long-term improvement of QoL in DM patients undergoing endovascular treatment.

Go to article

Authors and Affiliations

Agnieszka Wachsmann
Mikołaj Maga
Martyna Schönborn
Marta Olszewska
Mateusz Blukacz
Małgorzata Cebeńko
Agnieszka Trynkiewicz
Paweł Maga
Download PDF Download RIS Download Bibtex

Abstract

The primary objective of this paper is the custom design of an effective, yet relatively easyto- implement, predictive control algorithm to maintain normoglycemia in patients with type 1 diabetes. The proposed patient-tailorable empirical model featuring the separated feedback dynamics to model the effect of insulin administration and carbohydrate intake was proven to be suitable for the synthesis of a high-performance predictive control algorithm for artificial pancreas.Within the introduced linear model predictive control law, the constraints were applied to the manipulated variable in order to reflect the technical limitations of insulin pumps and the typical nonnegative nature of the insulin administration. Similarly, inequalities constraints for the controlled variable were also assumed while anticipating suppression of hypoglycemia states during the automated insulin treatment. However, the problem of control infeasibility has emerged, especially if one uses too tight constraints of the manipulated and the controlled variable concurrently. To this end, exploiting the Farkas lemma, it was possible to formulate the helper linear programming problem based on the solution of which this infeasibility could be identified and the optimality of the control could be restored by adapting the constraints. This adaptation of constraints is asymmetrical, thus one can force to fully avoid hypoglycemia at the expense of mild hyperglycemia. Finally, a series of comprehensive in-silico experiments were carried out to validate the presented control algorithm and the proposed improvements. These simulations also addressed the control robustness in terms of the intersubject variability and the meal announcements uncertainty.
Go to article

Authors and Affiliations

Martin Dodek
1
Eva Miklovicová
1

  1. Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

With the improvement of people’s living standards and rapid economic development, the incidence of diabetes mellitus (DM) is increasing in most parts of the world. DM presents an important potential threat to human health. In the present study, a model of diabetes in female mice was established, and fasting blood glucose was detected at week 4, after which the biochemical profiles were evaluated by histopathological analysis. The success rate of modeling in the normal control (NC) group and the low/ middle/high-dose streptozotocin (STZ) group were 0, 0, 25% and 60%, respectively. In the middle-dose and high-dose STZ groups, the liver index was increased significantly compared with the NC group (p<0.05). The blood biochemical indicators of total cholesterol and low density lipoprotein cholesterol in three STZ injection groups were as follows: alanine aminotransferase and aspartate transaminase in middle- and high-dose STZ groups, high-density lipoprotein cholesterol and serum creatinine in the high-dose STZ group, and blood urea nitrogen in the middle-dose STZ group were significantly increased (p<0.05). The level of total triglycerides was lower, obviously, in the high-dose STZ group than in the NC group (p<0.05). The mice showed marked steatosis, green-dyed fiber tissue coloring in varying degrees, and the contour of the hepatic lobules basically disappeared in STZ injection groups. The results suggest that to establish a diabetes model for female ICR mice, the optimum dose of STZ is 100 mg/kg.
Go to article

Authors and Affiliations

R. Guo
1 2
J. Dong
3
D.Q. Wang
3
Y.F. Gu
1 2

  1. State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  2. Jinan Microecological Biomedicine Shandong Laboratory, No. 3716 Qingdao Road, Huaiyin District, Jinan City, Shandong Province, Solutia City Light West Building, 21F, Shandong Laboratory of Microecological Biomedicine, Jinan 250117, China
  3. Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

This page uses 'cookies'. Learn more