Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 100
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study summarises the research efforts undertaken in iron foundry plants in which the process are mostly automated and mechanised.

The research program was limited in scope, focusing on causes of surface defects in castings products that are attributable to the

bentonite-containing sand and the mould system. One of the potential roots of surface defects is heterogeneity of sand grains, containing

lumped ball-shaped grains and irregular pellets with a layered-structure. The moisture contents of those lumped grains is different than

the moisture level required in the process, besides these grains may contain various elements and metallic compounds which, when cast

into moulds, may react with molten metals in an uncontrolled manner. As a result, surface defects are produced, such as surface blowholes,

burst penetration, sand holes, slag inclusions, pinhole porosity. This study investigated the efficiency of key sand preparation and

moulding machines and installations integrated into the casting process line. The efficiency of machines and installations is defined in

terms of quality parameters of sand mix and moulds, which are associated with the emergence of surface defects on castings.

Go to article

Authors and Affiliations

R. Wrona
E. Ziółkowski
M. Brzeziński
Download PDF Download RIS Download Bibtex

Abstract

Definition of a composite [1] describes an ideal composite material with perfect structure. In real composite materials, structure is usually imperfect – composites contain various types of defects [2, 3–5], especially as the casted composites are of concern. The reason for this is a specific structure of castings, related to course of the manufacturing process. In case of metal matrix composite castings, especially regarding these manufactured by saturation, there is no classification of these defects [2, 4]. Classification of defects in castings of classic materials (cast iron, cast steel, non-ferrous alloys) is insufficient and requires completion of specific defects of mentioned materials. This problem (noted during manufacturing metal matrix composite castings with saturated reinforcement in Institute of Basic Technical Sciences of Maritime University Szczecin) has become a reason of starting work aimed at creating such classification. As a result, this paper was prepared. It can contribute to improvement of quality of studied materials and, as a consequence, improve the environment protection level.

Go to article

Authors and Affiliations

K. Gawdzińska
D. Nagolska
M. Szweycer
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the best castings’ manufacturers have to meet very demanding requirements and specifications applicable to mechanical properties and other characteristics. To fulfill those requirements, more and more sophisticated methods are being used to analyze the internal quality of castings. In many cases, the commonly used Non-Destructive Methods, like X-ray or ultrasonic testing, are not enough to ensure precise and unequivocal evaluation. Especially, when the properties of the casting only slightly fail the specification and the reasons for such failures are very subtle, thus difficult to find without the modern techniques. The paper presents some aspects of such an approach with the use of Scanning Electron Microscopy (SEM) to analyze internal defects that can critically decrease the performance of castings. The paper presents the so-called bifilm defects in ductile and chromium cast iron, near-surface corrosion caused by sulfur, micro-shrinkage located under the risers, lustrous carbon precipitates, and other microstructure features. The method used to find them, the results of their analysis, and the possible causes of the defects are presented. The conclusions prove the SEM is now a powerful tool not only for scientists but it is more and more often present in the R&D departments of the foundries.
Go to article

Bibliography

[1] Mehta, N.D., Gohil, A.V. & Doshi, J.S. (2018). Innovative support system for casting defect analysis – a need of time. Materials Today: Proceedings. 5, 4156-4161. DOI: 10.1016/j.matpr.2017.11.677.
[2] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M, Sobieraj, J., Matuszkiewicz, G., Szwalbe, L & Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 1, 105-110. DOI: 10.24425/afe.2020.131290.
[3] Garbacz-Klempka, A., Karczmarek, Ł., Kwak, Z., Kozana, J., Piękoś, M., Perek-Nowak, M. & Długosz, P. (2018). Analysis of a castings quality and metalworking technology. treasure of the bronze age axes. Archives of Foundry Engineering. 3, 179-185. DOI: 10.24425/123622.
[4] Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. & Gauthier, C. (2007). A history of scanning electron microscopy developments: Towards ‘‘wet-STEM’’ imaging. Micron. 38, 390–401. DOI: 10.1016/j.micron.2006.06.008.
[5] Kalandyk, B., Zapała, R., Sobula, S. & Tęcza, G. (2019). The effect of CaSiAl modification on the non-metallic inclusions and mechanical properties of low-carbon microalloyed cast steel. Archives of Foundry Engineering. 1, 47-52. DOI: 10.24425/afe.2018.125190.
[6] Gawdzińska, K. (2017). Methods of the detection and identification of structural defects in saturated metallic composite castings. Archives of Foundry Engineering. 3, 37-44. DOI: 10.1515/afe-2017-0087.
[7] Nicoletto, G., Konecna, R. & Fintova, S. (2012). Characterization of microshrinkage casting defects of Al–Si alloys by X-ray computed tomography and metallography. International Journal of Fatigue. 41, 39-46. DOI: 10.1016/j.ijfatigue.2012.01.006.
[8] Li, J., Chen, R., Ma, Y. & Ke, W. (2014). Characterization and prediction of microporosity defect in sand cast WE54 alloy castings. Journal of Materials Science & Technology. 30(10), 991-997. DOI: 10.1016/j.jmst.2014.03.011.
[9] Velasco, E., Rodríguez, A., González, J.A., Talamantes, J., Colás, R. & Valtierra, S. (2003). Use of microscopical techniques in failure analysis and defect control in automotive castings. microscopy and microanalysis 9 (Suppl 2), 160-161. DOI: 10.1017/S1431927603440713.
[10] Staude, A., Bartscher, M., Ehrig, K., Goebbels, J., Koch, M., Neuschaefer-Rube, U. & Notel, J. (2011). Quantification of the capability of micro-CT to detect defects in castings using a new test piece and a voxel-based comparison method. NDT&E International. 44, 531-536.
[11] Bovas Herbert Bejaxhin, A., Paulraj, G. & Prabhakar, M. (2019). Inspection of casting defects and grain boundary strengthening on stressed Al6061 specimen by NDT method and SEM micrographs. Journal of Materials Research Technology. 8(3), 2674-2684. DOI: 10.1016/j.jmrt.2019.01.029.
[12] Haguenau, F., Hawkes, P. W., Hutchison, J.L., Satiat–Jeunemaître, B., Simon, G. T. & Williams, D. B. (2003). Key events in the history of electron microscopy. Microscopy and Microanalysis. 9, 96-138. DOI: 10.1017/S1431927603030113.
[13] Davut, K., Yalcin, A. & Cetin, B. (2017). Multiscale microstructural analysis of austempered ductile iron castings. Microscopy and Microanalysis. 23(1), 350-351. DOI: 10.1017/S1431927617002434.
[14] Bedolla-Jacuinde, A. Correa, R., Quezada, J.G. & Maldonado, C. (2005). Effect of titanium on the as-cast microstructure of a 16% chromium white iron. Materials Science and Engineering A. 398, 297–308. DOI: 10.1016/j.msea.2005.03.072.
[15] Bedolla-Jacuinde, A., Aguilar, S.L. & Hernandez, B. (2005). Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: i. effect on microstructure. Journal of Materials Engineering and Performance. 14, 149-157. DOI: 10.1361/10599490523300.
[16] Bedolla-Jacuinde, A., Aguilar, S.L. & Maldonado, C. (2005). Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: part ii. effect on the wear behavior. Journal of Materials Engineering and Performance. 14, 301-306. DOI: 10.1361/10599490523300.
[17] Chung, R.J., Tang, X., Li, D.Y., Hinckley, B. & Dolman, K. (2013). Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear. 301, 695-706. DOI: 10.1016/j.wear.2013.01.079.
[18] Guo, E., Wang, L., Wang, L. & Huang, Y. (2009). Effects of RE, V, Ti and B composite modification on the microstructure and properties of high chromium cast iron containing 3% molybdenum. Rare Metals. 28, 606-611. DOI: 10.1007/s12598-009-0116-1.
[19] Siekaniec, D., Kopyciński, D., Szczęsny, A., Guzik, E., Tyrała, E. & Nowak, A. (2017). Effect of titanium inoculation on tribological properties of high chromium cast iron. Archives of Foundry Engineering. 4, 143-146. DOI: 10.1515/afe-2017-0146.
[20] Kopyciński, D. & Piasny, S. (2016). Influence of inoculation on structure of chromium cast iron. in characterization of Minerals, Metals, and Materials, Ikhmayies, S.J., Ed.; Springer Science and Business Media LLC: Berlin, Germany, 705-712.
[21] Kopyciński, D. (2009). Inoculation of chromium white cast iron. Archives of Foundry Engineering. 9, 191-194.
[22] Tiryakioglu, M. (2020). On the heterogeneous nucleation pressure for hydrogen pores in liquid aluminium. International Journal of Cast Metals Research. 33(4-5), 153-156. DOI: 10.1080/13640461.2020.1797335.
[23] Tiryakioglu, M. (2020). The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality. Metals. 10, 368. DOI: 10.3390/met10030368.
[24] Dojka, M. & Stawarz, M. (2020). Bifilm defects in Ti-inoculated chromium white cast iron. Materials. 13, 3124. DOI: 10.3390/ma13143124.
[25] Campbell, J. (2015). Complete Casting Handbook. Metal Casting Processes, Metallurgy, Techniques and Design. 2nd ed. Oxford, UK: Butterworth-Heinemann.
[26] Jonczy, I. (2014). Diversification of phase composition of metallurgical wastes after the production of cast iron. Archives of Metallurgy and Materials. 59 (2), 481-485. DOI: 10.2478/AMM-2014-0079.
[27] Campbell, J. (2009). A Hypothesis for cast iron microstructures. Metallurgical and Materials Transactions B. 40(6), 786-801. DOI: 10.1007/s11663-009-9289-0.
[28] Mihailova I., Mehandjiev, D. (2010). Characterization of fayalite from copper slags. Journal of the University of Chemical Technology and Metallurgy. 45(3), 317-326.
[29] Presnall, D.C. (1995). Phase diagrams of Earth-forming minerals. Mineral Physics & Crystallography – A Handbook of Physical Constants. 2, 248–268.
[30] Lide, D.R. (2004). Handbook of chemistry and physics. CRC Press LLC, Boca Raton.
[31] Irons, G.A. & Guthrie, R.I.L. (1981). Kinetic aspects of magnesium desulfurization of blast furnace iron. Ironmaking and Steelmaking. 8, 114-21.
Go to article

Authors and Affiliations

J. Jezierski
1
ORCID: ORCID
M. Dojka
1
M. Stawarz
1
ORCID: ORCID
R. Dojka
2

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa, 44-100 Gliwice, Poland
  2. ODLEWNIA RAFAMET Sp. z o.o., 1 Staszica, 47-420 Kuźnia Raciborska, Poland
Download PDF Download RIS Download Bibtex

Abstract

In pursuit of increased efficiency and longer operating times of photovoltaic systems, one may encounter numerous difficulties in the form of defects that occur in both individual solar cells and whole modules. The causes of the occurrence range from structural defects to damage during assembly or, finally, wear and tear of the material due to operation. This article provides an overview of modern imaging methods used to detect various types of defects found in photovoltaic cells and panels. The first part reviews typical defects. The second part of the paper reviews imaging methods with examples of the authors’ own test results. The article concludes with recommendations and tables that provide a kind of comprehensive guide to the methods described, depending on the type of defects detected, the range of applicability, etc. The authors also shared their speculations on current trends and the possible path for further development and research in the field of solar cell defect analysis using imaging.
Go to article

Authors and Affiliations

Maurycy Maziuk
1
Laura Jasińska
1
Jarosław Domaradzki
1
Paweł Chodasewicz
1

  1. Wrocław University of Science and Technology, Faculty of Electronic, Photonics and Microsystems, Department ofElectronic and Photonic Metrology, Division of Thin Film Technologies, Wybrzeze Wyspianskiego 27, 50-370 Wrocław,Poland
Download PDF Download RIS Download Bibtex

Abstract

The authors developed the definition of construction defect and fault and construction defect management based on Polish and foreign publications. In order to assist identification of faults and their analysis in the process of home collection, the authors applied the Case Based Reasoning (CBR) method. In the paper, the authors used Case Based Reasoning (CBR) to support acceptance of apartments. The CBR method allows to determine the magnitude of global similarity for the problem under consideration between the new and old case from the Case Base, using weighted sums of local similarities using criteria weights as coefficients. As a result of CBR-based solutions, an Employer’s representative receives information about the type of construction defects that can be expected, their location and significance, occurrence frequency, and estimated repair cost.

Go to article

Authors and Affiliations

K. Zima
S. Biel
Download PDF Download RIS Download Bibtex

Abstract

The powerful tool for defect analysis is an expert system. It is a computer programme based on the knowledge of experts for solving the

quality of castings. We present the expert system developed in the VSB-Technical University of Ostrava called ‘ESWOD’. The ESWOD

programme consists of three separate modules: identification, diagnosis / causes and prevention / remedy. The identification of casting

defects in the actual form of the system is based on their visual aspect.

Go to article

Authors and Affiliations

T. Elbel
Y. Králová
J. Hampl
Download PDF Download RIS Download Bibtex

Abstract

Diagnostics of composite castings, due to their complex structure, requires that their characteristics are tested by an appropriate description

method. Any deviation from the specific characteristic will be regarded as a material defect. The detection of defects in composite castings

sometimes is not sufficient and the defects have to be identified. This study classifies defects found in the structures of saturated metallic

composite castings and indicates those stages of the process where such defects are likely to be formed. Not only does the author

determine the causes of structural defects, describe methods of their detection and identification, but also proposes a schematic procedure

to be followed during detection and identification of structural defects of castings made from saturated reinforcement metallic composites.

Alloys examination was conducted after technological process, while using destructive (macroscopic tests, light and scanning electron

microscopy) and non-destructive (ultrasonic and X-ray defectoscopy, tomography, gravimetric method) methods. Research presented in

this article are part of author’s work on castings quality.

Go to article

Authors and Affiliations

K. Gawdzińska
Download PDF Download RIS Download Bibtex

Abstract

The work concerns of modeling the process of manufacturing machine parts by casting method. Making a casting without internal defects is a difficult task and usually requires numerous computer simulations and their experimental verification at the prototyping stage. Numerical simulations are then of priority importance in determining the appropriate parameters of the casting process and in selecting the shape of the riser for the casting fed with it. These actions are aimed at leading shrinkage defects to the riser, so that the casting remains free from this type of defects. Since shrinkage defects usually disqualify the casting from its further use, this type of research is still valid and requires further work. The paper presents the mathematical model and the results of numerical simulations of the casting solidification process obtained by using the Finite Element Method (FEM). A partial differential equation describing the course of thermal phenomena in the process of 3D casting creating was applied. This equation was supplemented with appropriate boundary and initial conditions that define the physical problem under consideration. In numerical simulations, by selecting the appropriate shape riser, an attempt was made to obtain a casting without internal defects, using a simple method of identifying their location. This is the main aim of the research as such defects in the casting disqualify it from use.
Go to article

Authors and Affiliations

L. Sowa
1
ORCID: ORCID
T. Skrzypczak
1
ORCID: ORCID
P. Kwiatoń
1
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, Dąbrowskiego 73, 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

CVM ( Complex Vertebral Malformations) and Brachyspina (BY) are the most common autosomal recessive genetic defects occurring in the last two decades in Holstein dairy cattle around the world. Beginning from 2004 and 2014, 3035 and 338 Polish Holstein-Friesian bulls were tested to find carriers of CVM and BY, respectively. Among analyzed bulls 191 CVM carriers (6.29%) and 20 BY carriers (5.92%) were identified. No CVM carriers were observed beginning from 2016, whereas only single BY carriers was identified annually for the last 5 years. One bull turned to be double CVM/ BY carrier as a son of also double CVM/BY top Dutch sire (JABOT 90676-4-9). It is shown that CVM and BY defects are practically eradicated from Polish dairy cattle although incidental testing should be continued if new bulls with CVM or BY carriers in sire or dam pedigree will unexpectedly appear.
Go to article

Authors and Affiliations

S. Kamiński
1

  1. University of Warmia and Mazury, Department of Animal Genetics, Faculty of Animal Bioengineering, Oczapowskiego 5, 10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to gain a deeper understanding of the separation effects and particle movement during filtration of non-metallic inclusions in aluminum casting on a macroscopic level. To understand particle movement, complex simulations are performed using Flow 3D. One focus is the influence of the filter position in the casting system with regard to filtration efficiency. For this purpose, a real filter geometry is scanned with computed tomography (CT) and integrated into the simulation as an STL file. This allows the filtration processes of particles to be represented as realistically as possible. The models provide a look inside the casting system and the flow conditions before, in, and after the filter, which cannot be mapped in real casting tests. In the second part of this work, the casting models used in the simulation are replicated and cast in real casting trials. In order to gain further knowledge about filtration and particle movement, non-metallic particles are added to the melt and then separated by a filter. These particles are then detected in the filter by metallographic analysis. The numerical simulations of particle movement in an aluminum melt during filtration, give predictions in reasonable agreement with experimental measurements.
Go to article

Bibliography

[1] Ishikawa, K., Okuda, H. & Kobayashi, Y. (1997). Creep behaviors of highly pure aluminum at lower temperatures. Materials Science and Engineering A. 234-236, 154-156.
[2] Ishikawa, K. & Kobayashi, Y. (2004). Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Materials Science and Engineering A, 387-389, 613-617.
[3] Dobes, F. & Milicka, K. (2004). Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions. Materials Science and Engineering A. 387-389, 595-598.
[4] Requena, G. & Degischer, H.P. (2006). Creep behavior of unreinforced and short fiber reinforced AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 420, 265-275.
[5] Li, L.T., Lin, Y.C., Zhou, H.M. & Jiang, Y.Q. (2013). Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Computational Materials Science. 73, 72-78.
[6] Fernandez-Gutierrez, R. & Requena, G.C. (2014). The effect of spheroidization heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 598, 147-153.
[7] Zhang, Q., Zhang, W. & Liu, Y. (2015). Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109. Materials Science and Engineering A. 628, 340-349.
[8] Wang, Q., Zhang, L., Xu, Y., Liu, C., Zhao, X., Xu, L., Yang, Y. & Cia, Y. (2020). Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China. 30(10), 2599-2612.
[9] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B. & Lee, E. (2020). Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization. 167, 110495.
[10] Zhang, M., Lewis, R.J. & Gibeling, J.C. (2021). Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy. Materials Science and Engineering A. 805, 140796.
[11] Golshan, A.M.A., Aroo, H. & Azadi, M. (2021). Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Applied Physics A. 127, 48.
[12] Pal, K., Navin, K. & Kurchania, R. (2020). Study of structural and mechanical behavior of Al-ZrO2 metal matrix nano-composites prepared by powder metallurgy method. Materials today: Proceeding. 26(Part 2), 2714-2719.
[13] Shuvho, M.B.A. Chowdhury, M.A., Kchaou, M., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum-based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442.
[14] Azadi, M. & Aroo, H. (2019).Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Materials Research Express. 6, 115020.
[15] Cadek, J., Oikawa, H. & Gustek, V. (1995).Threshold creep behavior of discontinuous aluminum and aluminum alloy matrix composites: an overview. Materials Science and Engineering A. 190, 9-23.
[16] Spigarelli, S. & Paoletti, C. (2018). A new model for the description of creep behavior of aluminum-based composites reinforced with nano-sized particles. Composites Part A. 112, 346-355.
[17] Gupta, R. & Daniel, B.S.S.(2018). Impression creep behavior of ultrasonically processed in-situ Al3Ti reinforced aluminum composite. Materials Science and Engineering A. 733, 257-266.
[18] Gonga, D., Jianga, L., Guanc, J., Liua, K., Yua, Z. & Wua, G. (2020). Stable second phase: the key to high-temperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering A. 770, 138551.
[19] Zhao, Q., Zhang, H., Zhang, X., Qiu, F. & Jiang, Q. (2018). Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science and Engineering A. 718, 305-310.
[20] Bhoi, N., Singh, H. & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano-particles - A review. Journal of Composite Materials. 54(6), 813-833.
[21] Azadi, M., Zomorodipour, M. & Fereidoon, A. (2021). Study of effect of loading rate on tensile properties of aluminum alloy and aluminum matrix nano-composite. Journal of Mechanical Engineering. 51(1), 9-18.
[22] Bhowmik, A., Dey, D. & Biswas, A. (2021). Characteristics study of physical, mechanical and tribological behavior of SiC/TiB2 dispersed aluminum matrix composite. Silicon. 06 January. DOI: https://doi.org/10.1007/s12633-020-00923-2.
Go to article

Authors and Affiliations

B. Baumann
1
A. Keßler
1
E. Hoppach
1
G. Wolf
1
M. Szucki
1
ORCID: ORCID
O. Hilger
2

  1. Foundry Institute, Technische Universität Bergakademie Freiberg, 4 Bernhard-von-Cotta-Str., 09599 Freiberg, Germany
  2. Simcast GmbH, Westring 401, 42329 Wuppertal, Germany
Download PDF Download RIS Download Bibtex

Abstract

In our study, we estimated the frequency of haplotype for cholesterol deficiency (HCD) carriers in the Russian Holstein cattle population. We studied 1817 random samples of cows born in 2010-2017 from ten herds and 331 cows and heifers from the other three herds born in 2016-2019, fathers or fathers of mothers of which were HCD carriers. The method of AS-PCR was used for animals genotyping. In the first group of animals, the incidence of HCD carriers was 8.09%, and in the second one - 23.26%. Our results demonstrated the necessity to test cows for the carriage of the HCD genetic defect in the Russian population of Holstein cattle.

Go to article

Authors and Affiliations

M.V. Pozovnikova
E.A. Gladyr
O.S. Romanenkova
O.K. Vasileva
V.B. Leibova
V.I. Tyshchenko
N.V. Dementeva
Download PDF Download RIS Download Bibtex

Abstract

A group of old apartment houses with the age over 100 years (that is those carried out before the First World War) takes an important place in polish building resources. Technical maintenance of apartment houses, traditional methods erected, is nowadays and will be a valid problem in the nearest future. The results of the work refer to the general population, estimated for 600 objects, that is about 20% of municipal downtown apartment houses in Wrocław.

The purpose of the research was to identify an influence of widely considered maintenance of apartment houses on a degree and intensity of their elements’ deterioration. The goal of the work has been fulfilled by symptoms’ analysis of declining of inspected elements’ exploitation values, that is identification of mechanics of their defects arising.

The range of the work has required creation of original qualitative model of pinpointed defects and its transfer into quantitative one. It has made possible to analyse the reason - effect phenomena „defect - technical wear” relevant to the most important elements of Wroclaw downtown district’s apartment houses. The research procedure has been conducted in accordance of fuzzy sets theory which made possible to describe qualitative model of pinpointed defects and its transfer into a quantitative one.

Go to article

Authors and Affiliations

J. Konior
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the performance of an algorithm for detection of defect centers in semiconductor materials. It is based on direct parameter approximation with nonlinear regression to determine the parameters of thermal emission rate in the photocurrent waveforms. The methodology of the proposed algorithm was presented and its application procedure was described and the results of its application can be seen in measured photocurrent waveforms of a silicon crystal examined with High-Resolution Photoinduced Transient Spectroscopy (HRPITS). The performance of the presented algorithm was verified using simulated photocurrent waveforms without and with noise at the level of 10 -2. This paper presents for the first time the application of the direct approximation method using modern regression and clustering algorithms for the study of defect centers in semiconductors.
Go to article

Authors and Affiliations

Witold Kaczmarek
1
Marek Suproniuk
1
Karol Piwowarski
1
Bogdan Perka
1
Piotr Paziewski
1

  1. Institute of Electronic Systems, Department of Electronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, the impact of the defect on the transmission of a mechanical wave in a periodic quasi-one-dimensional structure was investigated. The multilayer structure was made of PLA and air, while the defect layer was PNM-0.38PT with a significantly higher value of acoustic impedance in relation to the materials of the base structure. The influence of the position of the defect in the structure and its thickness was analysed. Transmission as a function of frequency was determined using the Transfer Matrix Method algorithm. The work showed the presence of band gaps in the analyzed structures. The influence of the symmetry of structures and substructures on the transmission of a mechanical wave was investigated. The influence of the number of layers with very low acoustic impedance (air) on the number of high transmission peaks with a small half-width was also demonstrated.
Go to article

Authors and Affiliations

S. Garus
1
ORCID: ORCID
M. Kuczyński
2
ORCID: ORCID
A. Kysiak
2
J. Garus
1
ORCID: ORCID
W. Sochacki
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, 73 Dąbrowskiego St r., 42-201 Częstochowa, Poland
  2. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Effect of annealing on the structural properties of arsenic-implanted mercury cadmium telluride film grown by molecular beam epitaxy was studied with the use of transmission electron microscopy and optical reflection. Strong influence of the graded-gap surface layer grown on top of the film on the behaviour of implantation-induced defects under arsenic activation annealing was revealed and interpreted.

Go to article

Authors and Affiliations

I.I Izhninab
O.I. Fitsych
Z. Świątek
Y. Morgiel
O.Yu. Bonchyk
H.V. Savytskyy
K.D. Mynbaev
A.V. Voitsekhovskii
A.G. Korotaev
M.V. Yakushev
V.S. Varavin
S.A. Dvoretsky
Download PDF Download RIS Download Bibtex

Abstract

Hundreds or even thousands of defects can be found during the building acceptance, hence the need for solutions which will facilitate the defect management, including identification, costing and repair. The aim of the paper is to present the possible use of BIM to support the defect management process during the acceptance of apartments in multifamily residential buildings. The paper presents a concept of quality control support application called MWBIM (Map of Knowledge BIM) which will collect data about discovered construction defects, their recording and servicing with the BIM technology. MWBIM will run based on Building Information Modelling (BIM), Augmented Reality (AR), Case-Based Reasoning (CBR) and maps of knowledge. There are three phases in the operation of the application: preparatory phase (planning the order of acceptance meetings and elements to be checked), acceptance phase (data collection and assigning them to the building information model) and the reporting phase (reports generation, assigning defects to contractors, follow-up of repair status). The intended uses of the application are mainly personnel involved in the acceptance of apartments.
Go to article

Authors and Affiliations

Sebastian Biel
1
ORCID: ORCID

  1. MSc., Eng., Cracow University of Technology, Faculty of Civil Engineering, Division of Management in Civil Engineering (L-7), Warszawska 24 Street, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Changes of gas pressure in the moulding sand in the zone adjacent to mould cavity were analysed during pouring of cast iron. No significant effect of pressure on the surface quality of castings was observed. In the second series of tests, the concentration of hydrogen in the gas atmosphere was measured. It has been found that the value of this concentration depends on metal composition and is particularly high in cast iron containing magnesium. This is due to the reduction of water vapour with the element that has high affinity to oxygen. The presence of hydrogen causes the formation of gas-induced defects on the casting surface.

Go to article

Authors and Affiliations

A. Chojecki
J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

The chosen, typical causes of quality defects of cast-iron „alphin” rings embedded in aluminum cast are being presented in this paper.

Diffusive joint of those inserts with the pistons casts is being used, due to extreme work conditions of destructive influence of the fuel mix

and variable thermo-mechanical loads, which reign in the combustion motor working chamber.

Go to article

Authors and Affiliations

J. Piątkowski
P. Kamiński
Download PDF Download RIS Download Bibtex

Abstract

Magnesium alloys due to their low density and high strength-to-weight ratio are promising material for the automotive and aerospace industries. Many elements made from magnesium alloys are produced by means of sand casting. It is essential to investigate impact of the applied mould components on the microstructure and the quality of the castings. For the research, six identical, 100x50x20mm plates has been sand cast from the Elektron 21 magnesium casting alloy. Each casting was fed and cooled in a different way: one, surrounded by mould sand, two with cast iron chills 20mm and 40mm thick applied, another two with the same chills as well as feeders applied and one with only the feeder applied. Solid solution grain size and eutectics volume fraction were evaluated quantitatively in Met-Ilo program, casting defects were observed on the scanning electron microscope Hitachi S3400N. The finest solid solution grain was observed in the castings with only the chills applied. Non metallic inclusions were observed in each plate. The smallest shrinkage porosity was observed in the castings with the feeders applied.
Go to article

Authors and Affiliations

B. Dybowski
R. Jarosz
A. Kiełbus
Download PDF Download RIS Download Bibtex

Abstract

Foundry technologists use their own style of gating system designing. Most of their patterns are caused by experience. The designs differ from plant to plant and give better or worse results. This shows that the theory of gating systems is not brought into general use sufficiently and therefore not applied in practise very often. Hence, this paper describes the theory and practical development of one part of gating systems - sprue base for automated horizontal moulding lines used for iron castings. Different geometries of sprue bases with gating system and casting were drawn in Solid Edge ST9. The metal flow through the gating systems was then simulated with use of MAGMA Express 5.3.1.0, and the results were achieved. The quality of flow was considered in a few categories: splashes, air entrapment, vortex generation and air contact. The economical aspect (weight of runner) was also taken under consideration. After quantitative evaluation, the best shape was chosen and optimised in other simulations with special attention on its impact on filling velocity and mould erosion. This design (a sprue base with notch placed in drag and cope) is recommended to be used in mass production iron foundries to reduce oxide creation in liquid metal and especially to still metal stream to improve filtration.

Go to article

Authors and Affiliations

J. Dorula
B. Siodmok
J. Jezierski
R. Romelczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium additives.
Go to article

Bibliography

[1] Kopyciński, D. (2015). Shaping the structure and mechanical properties of cast iron intended for operation in difficult conditions of use (selected issues). Katowice-Gliwice: Monography. Archives of Foundry Engineering. (in Polish).
[2] Kleiner, S. & Track K. (2010). SiMo 1000 - Ein aluminium - legiertes gusseisen für Hochtemperatur-anwendungen. Giesserei. 97, 28-34.
[3] Papis, K., Tunziniand, S., Menk, W. (2014). Cast iron alloys for exhaust applications. In 10th International Symposium on the Science and Processing of Cast Iron - SPCI10, November 2014. Mar del Plata, Argentina.
[4] Öberg, Ch., Zhu, B. & Jonsson, S. (2017). Plastic deformation and creep of two ductile cast irons, SiMo51 and SiMo1000, during thermal cycling with large strain. Materials Science Forum. 925, 361-368. DOI: https://doi.org/10.4028/www.scientific.net/MSF.925.361.
[5] Guzik, E. (2001). Cast iron refining processes, selected issues. Katowice: Archiwum Odlewnictwa PAN. (in Polish).
[6] Collective work (2013). Foundry's guide. Kraków: STOP. 138-139. (in Polish).
[7] Keivan A. Kasvayee, & Ghasemali E. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Material Science & Engineering A. 708, 159-170. DOI: https://doi.org/10.1016/j.msea.2017.09.115.
[8] Li, D., Perrin,. R., Burger, G., McFarlan, D., Black, B., Logan, R. & Williams, R. (2004). Solidification behavior, microstructure, mechanical properties, hot oxidation and thermal fatigue resistance of high silicon SiMo nodular cast irons. SAE International, Warrendale, 1-12. DOI: https://doi.org/10.4271/2004-01-0792.
[9] Muller, J., Wolf, G. (2001). Optimierte magnesiumdrahtinjektionstechnik zur herstellung von hochwertigem gusseisen mit kugelgraphit aus kupolofenbasiseisn. Giessereiforschung. 53(3), 85-103.
[10] Hampl, J. & Elbert, T. (2010). On modelling of the effect of oxygen on graphite morphology and properties of modified cast irons. Archives of Foundry Engineering. 10(4), 55-60.
[11] Mocek, J., Chojecki, A. (2009). Changes in the gas atmosphere of the casting mould during pouring iron alloys. In XXXIII Scientific Founder's Day Conference. Kraków. (in Polish).
Go to article

Authors and Affiliations

Ł. Dyrlaga
1 2
D. Kopyciński
1
E. Guzik
1

  1. AGH University of Science and Technology, Department of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. METALPOL Węgierska Górka ul. Kolejowa 6, 34-350 Węgierska Górka, Poland
Download PDF Download RIS Download Bibtex

Abstract

Simulation software can be used not only for checking the correctness of a particular design but also for finding rules which could be used

in majority of future designs. In the present work the recommendations for optimal distance between a side feeder and a casting wall were

formulated. The shrinkage problems with application of side feeders may arise from overheating of the moulding sand layer between

casting wall and the feeder in case the neck is too short as well as formation of a hot spot at the junction of the neck and the casting. A

large number of simulations using commercial software were carried out, in which the main independent variables were: the feeder’s neck

length, type and geometry of the feeder, as well as geometry and material of the casting. It was found that the shrinkage defects do not

appear for tubular castings, whereas for flat walled castings the neck length and the feeders’ geometry are important parameters to be set

properly in order to avoid the shrinkage defects. The rules for optimal lengths were found using the Rough Sets Theory approach,

separately for traditional and exothermic feeders.

Go to article

Authors and Affiliations

M. Perzyk
J. Kozlowski
M. Mazur
K. Szymczewski
Download PDF Download RIS Download Bibtex

Abstract

Simulation software dedicated for design of casting processes is usually tested and calibrated by comparisons of shrinkage defects

distribution predicted by the modelling with that observed in real castings produced in a given foundry. However, a large amount of

expertise obtained from different foundries, including especially made experiments, is available from literature, in the form of

recommendations for design of the rigging systems. This kind of information can be also used for assessment of the simulation predictions.

In the present work two parameters used in the design of feeding systems are considered: feeding ranges in horizontal and vertical plates as

well as efficiency (yield) of feeders of various shapes. The simulation tests were conducted using especially designed steel and aluminium

castings with risers and a commercial FDM based software. It was found that the simulations cannot predict appearance of shrinkage

porosity in horizontal and vertical plates of even cross-sections which would mean, that the feeding ranges are practically unlimited. The

yield of all types of feeders obtained from the simulations appeared to be much higher than that reported in the literature. It can be

concluded that the feeding flow modelling included in the tested software does not reflect phenomena responsible for the feeding processes

in real castings properly. Further tests, with different types of software and more fundamental studies on the feeding process modelling

would be desirable.

Go to article

Authors and Affiliations

M. Perzyk
A. Kochański
P. Mazurek
K. Karczewski

This page uses 'cookies'. Learn more