Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audio decoder and music synthesizer platform developed by the authors. The decoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to keep the complexity low, most of the processing is performed in the parametric domain. This parametric processing includes pitch and tempo shifting, volume adjustment, selection of psychoacoustically relevant components for synthesis and stereo image creation. The decoder allows for good quality 44.1 kHz stereo audio streaming at 24 kbps. The synthesizer matches the audio quality of industry-standard sample-based synthesizers while using a twenty times smaller memory footprint soundbank. The presented decoder/synthesizer is designed for low-power mobile platforms and supports music streaming, ringtone synthesis, gaming and remixing applications.

Go to article

Authors and Affiliations

Marek Szczerba
Werner Oomen
Dieter Therssen
Download PDF Download RIS Download Bibtex

Abstract

In this article, we propose a new stopping criterion for turbo codes. This criterion is based on the behaviour of the probabilistic values alpha 'α' calculated in the forward recursion during turbo decoding. We called this criterion Sum-α. The simulation results show that the Bit Error Rates BER are very close to those of the Cross-Entropy CE criterion with the same average number of iterations.
Go to article

Bibliography

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes, ” in Proc. IEEE Int. Conf. Commun., pp. 1064–1070, May 1993.
[2] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of binary block and convolutional codes”, IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.
[3] M. Y. M. Nasir, R. Mohamad, M. Kassim, N. M. Tahir and E. Abdullah, “Performance Analysis of Cross-Entropy Stopping Criterion for Quadrature Amplitude Modulation, ” 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, pp. 273-276, 2019.
[4] R. Y. Shao, S. Lin and M. P. C. Fossorier, “Two simple stopping criteria for turbo decoding, ” IEEE Transactions on Communications, vol. 47, no. 8, pp. 1117–1120, Aug. 1999.
[5] Y. Wu, B. D. Woerner and W. J. Ebel, “A simple stopping criterion for turbo decoding", IEEE Communications Letters, vol. 4, no. 8, pp. 258– 260, Aug. 2000.
[6] T. M. N. Ngatched and F. Takawira, “Simple stopping criterion for turbo decoding”, IEE Electronics Letters, vol. 37, no. 22, pp. 1350- 1351, Oct. 2001.
[7] A. Shibutani, H. Suda and F. Adachi, “Reducing average number of turbo decoding iterations”, IEE Electronics Letters, vol. 35, no. 9, pp.701–702, Apr. 1999.
[8] M. AlMahamdy and J. Dill, “Early Termination of Turbo Decoding by Identification of Undecodable Blocks,” 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, pp. 1-6, 2017.
[9] A. Taffin, “Generalised stopping criterion for iterative decoders,” IEEElectronics Letters, vol. 39, no. 13, pp. 993-994, June 2003.
[10] L. Trifina, H.G. Baltă and A. Ruşinaru, “Decreasing of the turbo MAP decoding time by using an iterations stopping criterion, ” IEEE International Symposium on Signals, Circuits and Systems ISSCS 2005, Iasi, Romania, pp. 371–374, 14-15 July 2005
[11] F. M. Li and A. Y. Wu, “On the new stopping criteria of iterative turbo decoding by using decoding threshold, ” IEEE Transactions on Signal Processing, vol. 55, no. 11, pp. 5506–5516, Nov. 2007.
[12] J. Wu , B. R. Vojcic and J. Sheng, "Stopping Criteria for Iterative Decoding based on Mutual Information, ” 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 183-187, Nov, 2012
[13] A. Savin, L. Trifina, M. Andrei, “Threshold Based Iteration Stopping Criterion for Turbo Codes and for Scheme Combining a Turbo Code and a Golden Space-Time Block Code,” Advances in Electrical and Computer Engineering, vol.14, no.1, pp.139-142, 2014.
[14] I. Amamra et N. Derouiche, “Enhancement of iterative turbo decoding for HARQ systems,” ICTACT Journal on Communication Technology, vol. 7, no. 2, pp. 1295-1300, Jun. 2016
[15] A. Ouardi, A. Djebbari, B. Bouazza, “Optimal M-BCJR Turbo Decoding: The Z-MAP Algorithm,” Wireless Engineering and Technology, vol. 2, no. 4, pp. 230–234, 2011.
[16] V. Franz, J. B. Anderson. “Concatenated Decoding with a Reduced-Search BCJR Algorithm,” IEEE Journal on selected areas in communication, Vol, 16, pp. 186-195, 1998.
Go to article

Authors and Affiliations

Aissa Ouardi
1

  1. Laboratory Technology of Communication, Department of Electronics, University of Saida Dr. Moulay Tahar, Saida, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the differential binary modulation for decode-and-forward (DF) based relay-assisted free space optical (FSO) network under the effect of strong atmospheric turbulence together with misalignment error (ME). The atmospheric fading links experience K-distributed turbulence. First we derive novel closed form expression for average bit error rate (BER) and outage probability (OP) in terms of Meijer’s G function. Further, the OP of differential DF-FSO system with multiple relays is derived. We also analyze the asymptotic performance for the sake of getting the order of diversity and the coding gain. The power allotment term is utilized to examine the effect of different power allotment techniques on BER and OP. The simulation results have been used to validate the derived analytical results.
Go to article

Authors and Affiliations

Deepti Agarwal
1
Poonam Yadav
2

  1. Department of ECE, Delhi Technical Campus, Greater Noida, U.P, India
  2. Department of ECE, M.G.M College of Engineering and Technology, Noida, U.P, India

This page uses 'cookies'. Learn more