Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 106
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The complexity and uncontrolled formation of struvite (MgNH4PO4·6H2O) and its deposition in the technological equipment of wastewater treatment plants (WWTPs) are still the subject of research aimed at understanding the causes and proposing a remedial action. In order to reduce the intensity of the precipitation of struvite in wastewater treatment plants, it is recommended, among others, to limit flow velocity to below 1.5 m·s-1. Literature analysis showed that there are no studies on the precipitation of struvite deposits in pipelines. Most studies focus on the deliberate precipitation of struvite, for example phosphorus recovery, resulting in a molar ratio of 1:1:1 (NH4+:PO43-:Mg2+). In fact, in WWTPs, such concentrations do not occur, but there have been cases of the precipitation of this mineral (and its mixtures) in the sludge parts. In this paper, the study aimed at determining conditions for the precipitation of deposits with a significant participation of struvite on the inner walls of steel pipes. The study was conducted at a non-stoichiometric concentration of ingredients at different pH values, as well as under dynamic conditions with flow velocity below 1.5 m·s-1. A mathematical formula (ANOVA) that can be used to determine the mass of deposits in relation to the concentration of ammonium, phosphate, pH and flow velocity was developed. Computational models were developed on to investigate struvite precipitation under different pH levels (8.0–9.5) and ionic concentrations. The studies were carried out on solutions containing ammonium (NH4+), phosphate (PO43-), and magnesium (Mg2+), at a flow velocities of 0.4, 0.9 and 1.4 m·s-1. In order to determine the mathematical formula thanks to which the mass of precipitates can be determined, a special pilot study installation was constructed. The XPS surface analysis of sludge from sewage treatment plants showed a similar composition of compounds with sediments obtained in own research. The presence of struvite was suggested, but the share of atomic percentage of bonds to which struvite was classified is small and amounts to less than 4%. This means that sediments precipitated in the technological installations are a mixture of various compounds of which pure struvite may constitute only a small part.

Go to article

Authors and Affiliations

Justyna Czajkowska
Maciej Malarski
Tadeusz Siwiec
Download PDF Download RIS Download Bibtex

Abstract

The aim of presented studies was to develop a new geometry of the overflow part of standard ATD–C tester for derivative thermal analysis

in a way that it would allow to obtain samples for abrasion and mechanical properties tests in the same mould without the need of cutting

them from a block of material. The pattern of new ATD–P tester has parts reflecting implemented samples. Computer simulations

regarding initial verification of new tester were performed in NovaFlow software. Chromium cast iron melts were made for testing the

sampler in real conditions and TDA analysis for casting material were conducted. The sandmix was prepared on silica sand matrix per the

ALPHASET technology. This new solution greatly simplifies the preparations of materials difficult to machine.

Go to article

Authors and Affiliations

A. Studnicki
R. Dojka
M. Dojka
Download PDF Download RIS Download Bibtex

Abstract

There exists a problem with an in situ diagnostics of contamination of ethyl alcohol in a human being exhaled air. When ethyl alcohol in a mouth blowing (in a gaseous state) exists, the characteristic C–H stretch absorption bands in –CH3 and –CH2 – functional groups in ethanol (CH3–CH2–OH) appear at a wavelength of λ = 3.42 μm. To investigate the presence of ethyl alcohol in exhaled human air, the light beam of λ = 3.42 μm is passing through an air sample. If one alternately measures the intensity of the investigated beam and the reference, a percentage of ethanol in the air sample can be estimated using a sensitive nondispersive infrared (NDIR) system with a stable operating flow mass detector. To eliminate a mechanical chopper and noise generating stepper motors, a photonic chopper as a liquid crystal shutter for λ = 3.42 μm has been designed. For this purpose, an innovative infrared nematic liquid crystal mixture was intentionally prepared. The working mixture was obtained by a selective removal of CH bonds and its exchange by heavier polar substituents, what ensures a lack of absorption band of C–H bonds. The paper presents theory, concept and final experimental results of the infrared nematic liquid crystals mixture and the liquid crystal shutter for breathalyzer applications.

Go to article

Authors and Affiliations

W. Piecek
L. Jaroszewicz
E. Miszczyk
Z. Raszewski
M. Mrukiewicz
P. Kula
K. Jasek
P. Perkowski
E. Nowinowski-Kruszelnicki
J. Zieliński
J. Kędzierski
M. Olifierczuk
U. Chodorow
P. Morawiak
R. Mazur
K. Kowiorski
P. Harmata
J. Herman
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies of the effect of chromium concentration on the solidification process, microstructure and selected

properties of cast iron with vermicular graphite. The vermicular graphite cast iron was obtained by an Inmold process. Studies covered the

cast iron containing chromium in a concentration at which graphite is still able to preserve its vermicular form. The effect of chromium on

the temperature of eutectic crystallization and on the temperature of the start and end of austenite transformation was discussed. The conditions

under which, at a predetermined chromium concentration, the vermicular graphite cast iron of a pearlitic matrix is obtained were

presented, and the limit concentration of chromium was calculated starting from which partial solidification of the cast iron in a metastable

system takes place. The effect of chromium on the hardness of cast iron, microhardness of individual phases and surface fraction of carbides

was disclosed.

Go to article

Authors and Affiliations

G. Gumienny
M. Dondzbach
B. Kacprzyk
Download PDF Download RIS Download Bibtex

Abstract

Mechanical properties of aluminum-silicon alloys are defined by condition of alloying components in the structure, i.e. plastic metallic matrix created from solid solution  on the basis of Al, as well as hard and brittle precipitations of silicon. Size and distribution of silicon crystals are the main factors having effect on field of practical applications of such alloys. Registration of crystallization processes of the alloys on stage of their preparation is directly connected with practical implementation of crystallization theory to controlling technological processes, enabling obtainment of suitable structure of the material and determining its usage for specific requirements. An attempt to evaluate correlation between values of characteristic points laying on crystallization curves and recorded with use of developed by the author TVDA method (commonly denominated as ATND method) is presented in the paper together with assessment of hardness of tested alloy. Basing on characteristic points from the TVDA method, hardness of EN AC-AlSi9Mg alloy modified with strontium has been described in the paper in a significant way by the first order polynomial.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the processes connected with the formation of chromium white cast iron microstructure. The influence of titanium and strontium on the alloy crystallization has been described using TDA method and EDS analysis. Conducted experiments allowed the determination of the selected additions influence on the microstructure of examined alloys. TDA analysis enabled indication of the characteristic temperatures of thermal effects for samples with strontium and titanium and the comparison of results for the reference sample without additions. The results of TDA test also included the analysis of the temperature first derivative values, which presented interesting differences as well. The scanning microscopy observation clearly indicated the difference between the effect of strontium and titanium on the alloy microstructure. The EDS analysis helped to identify the chemical composition of the evolving phases and confirmed the strontium presence in the eutectic. Experimental results allowed to draw reliable conclusions about the effect of applied additions on the crystallization and microstructure of chromium cast iron.
Go to article

Authors and Affiliations

R. Dojka
M. Dojka
M. Kondracki
A. Studnicki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

Go to article

Authors and Affiliations

A. Trytek
M. Tupaj
M. Mróz
W. Orłowicz
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to induce permanent birefringence both in typical liquid crystal cells and photonic crystal fibers (PCFs) by photo-polymerization. For this purpose three different liquid crystalline materials, namely E7, 5CB, and 6CHBT were combined with a mixture of RM257 monomer and a UV sensitive initiator with the percentage weight less than 10%. Due to the photo-polymerization process it was possible to achieve polymer-stabilized liquid crystal orientation inside LC cells and micro-sized cylindrical glass tubes. In particular, periodic change in spatial molecular orientation was achieved by selective photo-polymerization. Successful results obtained in these simple geometries allowed for the experimental procedure to be repeated in PCFs leading to locally-induced permanent birefringence in PCFs.

Go to article

Authors and Affiliations

M.S. Chychłowski
S. Ertman
K. Rutkowska
O. Strzeżysz
R. Dąbrowski
T.R. Woliński
Download PDF Download RIS Download Bibtex

Abstract

In this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.

Go to article

Authors and Affiliations

K.A. Rutkowska
K. Milenko
O. Chojnowska
R. Dąbrowski
T.R. Woliński
Download PDF Download RIS Download Bibtex

Abstract

In article a two-dimensional photonic crystal (PhC) is considered and modelled as a new generation antireflection coating for optoelectronic devices. Traditional antireflective coatings (ARCs) reduce the reflection of the radiation only – the new generation of antireflective coatings should affect the distribution of the radiation also. Such functionality can be provided by the two-dimensional PhC which reduce the reflection and scatter transmitted light. Prior to the fabrication, the PhCs should be designed and analysed. Results of the analysis should provide quantitative means for choice of materials and design solutions. In work, we analyse the electromagnetic field distribution as Poynting vectors inside the materials of optoelectronic devices, in order to investigate the possibility of improving the construction of future optoelectronic devices. Furthermore, we calculate the reflection and transmission of that ARC. It’s a complex optic analysis of new generation of ARC. The numerical analysis has been performed with the FDTD method in Lumerical Software. In work, we consider the two-dimensional photonic crystal on the top surface of optoelectronic structures. We compared the results with the traditional ARC from these same parameters as PhC: thickness and material. As an example, we presented the application of modelled, photonic crystal, thin-film, GaAs solar cells with PhC on top. The efficiency of this solar cell, using the photonic crystal, was improved by 6.3% over the efficiency of this same solar cell without PhC. Thus, our research strongly suggests that the unique properties of the photonic crystal could be used as a new generation of ARC.

Go to article

Authors and Affiliations

D. Przybylski
S. Patela
Download PDF Download RIS Download Bibtex

Abstract

A dual-wavelength optical polarimetric approach has been proposed as a means of elimination of the systematic errors and estimation of the optical anisotropy parameters for a single DKDP crystal. Our HAUP-related polarimeter uses two semiconductor lasers with the neighbouring wavelengths of 635 nm and 650 nm. Based on the temperature dependence analysis of small characteristic azimuths of light polarization with respect to the axis of the sample, we found the parameters of imperfections of polarization system. We acquired eigen waves ellipticities in a DKDP crystal and found perpendicular to the optic axis value of the optical rotatory power. Our results correlate positively with previously measured data for KDP crystals.

Go to article

Authors and Affiliations

Y. Shopa
M. Shopa
N. Ftomyn
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research of metallic glass based on a Mg72Zn24Ca4 alloy. Metallic glass was prepared using induction melting and further injection on a spinning copper wheel. The X-ray diffractometer and differential scanning calorimeter (DSC) were used to investigate the phase transformation of the amorphous ribbon. The heat released in the crystallization process, during isothermal annealing, based on the differential scanning calorimeter investigation, was determined to be 166.18 Jg-1. The effect of isothermal annealing temperature on the kinetics of the amorphous alloy crystallization process using differential scanning calorimeter was investigated. For this purpose, two isothermal annealing temperatures were selected. The incubation time decreases as the temperature of the isothermal annealing increases from 300 to 252 seconds. The same relationship is visible in the case of duration of the phase transformation, which also decreases as the temperature of the isothermal annealing increases from 360 to 228 seconds. The obtained results show a significant influence of isothermal annealing temperature on the degree of phase transformation.

Go to article

Authors and Affiliations

J. Lelito
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of alloys plays an important role at their crystallization and influences the solid phase formation, and thus, microstructure and properties. The present paper studies the release of the heat of crystallization of alloyed wear-resistant cast irons in order to determine the quantitative patterns of the chemical composition influence to the kinetics of crystallization. The differential thermal analysis was applied to get the data of heat release, its rate at cast iron temperature decrease. The normalized dependence of the amount of crystallization heat over time was obtained. The main temperature parameters were analyzed and four stages at irons crystallization were established and characterized with their duration and released heat. The multiple correlation analysis allowed considering a numerous physical and chemical factors and distinguishing their role at crystallization of irons. As a result, the quantitative regularities are determined of influencing the content of alloying elements, impurities and carbides on a heat and time of crystallization at the different stages of solidification, which are of great importance in developing alloyed irons with required quality and properties.
Go to article

Authors and Affiliations

Y. Aftandiliants
1
ORCID: ORCID
S. Gnyloskurenko
1 2
ORCID: ORCID
H. Meniailo
3
ORCID: ORCID
V. Khrychikov
3
ORCID: ORCID
V. Lomakin
4
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Ukraine
  2. Physical and Technological Institute of Metals and Alloys, National Academy of Sciences of Ukraine, Ukraine
  3. Ukrainian State University of Science and Technologies, Ukraine
  4. Central Ukrainian National Technical University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of manganese on the crystallization process, microstructure and selected properties: cast iron hardness as well as ferrite and pearlite microhardness. The compacted graphite was obtained by Inmold technology. The lack of significant effect on the temperature of the eutectic transformation was demonstrated. On the other hand, a significant reduction in the eutectoid transformation temperature with increasing manganese concentration has been shown. The effect of manganese on microstructure of cast iron with compacted graphite considering casting wall thickness was investigated and described. The nomograms describing the microstructure of compacted graphite iron versus manganese concentration were developed. The effect of manganese on the hardness of cast iron and microhardness of ferrite and pearlite were given.

Go to article

Authors and Affiliations

Grzegorz Gumienny
ORCID: ORCID
B. Kurowska
ORCID: ORCID
P. Just
Download PDF Download RIS Download Bibtex

Abstract

These studies examined the concept of concentration and purification of several types of wastewater by freezing and thawing. The experiments demonstrated that freezing of contaminated liquid contributed to concentration of contaminants in solution as well as significant concentration and agglomeration of solid particles. A high degree of purification was achieved for many parameters. The results of comparative laboratory tests for single and multiple freezing are presented. It was found that there was a higher degree of concentration of pollutants in wastewater frozen as man-made snow than in bulk ice. Furthermore, the hypothesis that long storage time of liquid as snow and sufficient temperature gradient metamorphism allows for high efficiency of the concentration process was confirmed. It was reported that the first 30% of the melted liquid volume contained over 90% of all impurities. It gives great opportunities to use this method to concentrate pollutants. The results revealed that the application of this process in full scale is possible. Significant agglomeration of solid particles was also noted. Tests with clay slurry showed that repeated freezing and thawing processes significantly improve the characteristics of slurry for sedimentation and filtration.

Go to article

Authors and Affiliations

Janusz A. Szpaczyński
Jeffrey A. White
Caroline L. Côté
Download PDF Download RIS Download Bibtex

Abstract

In many systems of engineering interest the moment transformation of population balance is applied. One of the methods to solve the transformed population balance equations is the quadrature method of moments. It is based on the approximation of the density function in the source term by the Gaussian quadrature so that it preserves the moments of the original distribution. In this work we propose another method to be applied to the multivariate population problem in chemical engineering, namely a Gaussian cubature (GC) technique that applies linear programming for the approximation of the multivariate distribution. Examples of the application of the Gaussian cubature (GC) are presented for four processes typical for chemical engineering applications. The first and second ones are devoted to crystallization modeling with direction-dependent two-dimensional and three-dimensional growth rates, the third one represents drop dispersion accompanied by mass transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering of particle populations.

Go to article

Authors and Affiliations

Jerzy Bałdyga
Grzegorz Tyl
Mounir Bouaifi
Download PDF Download RIS Download Bibtex

Abstract

Among the family of stainless steels, cast austenitic stainless steels (CASSs) are preferably used due to their high mechanical properties

and corrosion resistance. These steels owe their properties to their microstructural features consisting of an austenitic matrix and skeletal

or lathy type δ-ferrite depending on the cooling rate. In this study, the solidification behavior of CASSs (304L and 316L grades) was

studied using ThermoCalc software in order to determine the solidification sequence and final microstructure during cooling. Theoretical

findings were supported by the microstructural examinations. For the mechanical characterization, not only hardness measurements but

also tribological studies were carried out under dry sliding conditions and worn surfaces were examined by microscopy and 3D

profilometric analysis. Results were discussed according to the type and amount of microstructural features.

Go to article

Authors and Affiliations

G. Aktaş Çelik
Ş. Polat
Ş.H. Atapek
G.N. Haidemenopoulos
Download PDF Download RIS Download Bibtex

Abstract

The article presents crystallization process of silicon molybdenum ductile cast iron (SiMo). The alloy with 5% silicon content and with

variable amounts of Mo in a range of 0-1% was chosen for the research. The carbon content in the analysed alloys did not exceed 3,1%.

The studies of crystallization process were based on thermal – derivative analysis (TDA). Chemical composition of all examined samples

was analysed with the use of LECO spectrometer. Additionally, the carbon and the sulphur content was determined basing on carbon and

sulphur LECO analyser. For metallographic examination, the scanning electron microscopy (SEM) with EDS analyser was used. Disclosed

phases have been also tested with the use of X-ray diffraction. The results allowed the description of crystallization processes of silicon

molybdenum ductile cast iron using thermal – derivative analysis (TDA). Conducted studies did not allow for the clear identification of all

complex phases containing molybdenum, occurring at the grain boundaries. Therefore, the further stages of the research could include the

use of a transmission electron microscope to specify the description of complex compounds present in the alloy.

Go to article

Authors and Affiliations

M. Stawarz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the effect of the temperature and hold time in the holding furnace of 226 silumin on the characteristic quantities of

TDA curves. The temperature of phase transformations and the cooling rate were tested.It has been shown that increasing both the hold

time and the temperature in the holdingfurnace cause the decreasethe end ofα+Al9Fe3Si2+β and α+Al2Cu+βternary eutectics

crystallizationtemperature in the tested silumin. This is due to the fact an increase in amounts of impurities as a result of reacting theliquid

alloy with the gases contained in the air.It has been shown, however, that examined technological factors ofthe metal preparation do not

cause systematic changes in the cooling rate.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The article is a case study of the steel milling ring casting of about 6 tonnes net weight. The casting has been cast in the steel foundry the authors have been cooperating with. The aim was to analyse the influence of the shape of the chills and the material which was used to make them on the casting crystallization process. To optimally design the chills the set of the computer simulation has been carried out with 3 chills’ shape versions and 3 material’s versions and the results have been compared with the technology being in use (no chills). The proposed chills were of different thermal conductivity from low to high. Their shapes were obviously dependant on the adjacent casting surface geometry but were the result of the attempt to optimise their effect with the minimum weight, too. The chills working efficiency was analysed jointly with the previously designed top feeders system. The following parameters have been chosen to compare their effectiveness and the crystallization process: time to complete solidification and so-called fed volume describing the casting feeding efficiency. The computer simulations have been carried out with use of MagmaSoft v. 5.2 software. Finally, the optimisation has led to 15% better steel yield thanks to 60% top feeders weight reduction and 40% shorter solidification time. The steel ring cast with use of such technology fulfil all quality criteria.

Go to article

Authors and Affiliations

M. Jaromin
R. Dojka
J. Jezierski
M. Dojka
Download PDF Download RIS Download Bibtex

Abstract

In the dissertation it has been shown, that so called “time-thermal treatment” (TTT) of the alloy in liquid state as overheating the metal

with around 250o

C above Tliq. and detailing it in temperature for 30 to 40 minutes has the influence on changing the crystallization

parameters (Tliq., TEmin.

, TEmax., TE(Me), TSol.). It was ascertained, that overheating the AlSi17Cu5Mg alloy substantially above Tliq. results

with microcrystalline structure. Evenly distributed in the eutectic warp primeval silicon crystals and supersaturated with alloying additives

of base content (Cu, Mg, Fe) of α(Al) solution, ensures not only increase durability in ambient temperature, but also at elevated

temperature (250o

C), what due to it’s use in car industry is an advantage.

Go to article

Authors and Affiliations

J. Piątkowski
P. Kamiński
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with

ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the

samples were conducted using the modified pin-on-disk method.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
R. Dojka
M. Gromczyk
Download PDF Download RIS Download Bibtex

Abstract

A numerical model of binary alloy crystallization, based on the cellular automaton technique, is presented. The model allows to follow the

crystallization front movement and to generate the images of evolution of the dendritic structures during the solidification of a binary

alloy. The mathematic description of the model takes into account the proceeding thermal, diffusive, and surface phenomena. There are

presented the results of numerical simulations concerning the multi-dendritic growth of solid phase along with the accompanying changes

in the alloying element concentration field during the solidification of Al + 5% wt. Mg alloy. The model structure of the solidified casting

was achieved and compared with the actual structure of a die casting. The dendrite interaction was studied with respect to its influence on

the generation and growth of the primary and secondary dendrite arms and on the evolution of solute segregation both in the liquid and in

the solid state during the crystallization of the examined alloy. The morphology of a single, free-growing dendritic crystal was also

modelled. The performed investigations and analyses allowed to state e.g. that the developed numerical model correctly describes the

actual evolution of the dendritic structure under the non-equilibrium conditions and provides for obtaining the qualitatively correct results

of simulation of the crystallization process.

Go to article

Authors and Affiliations

A. Zyska
Z. Konopka
M. Łągiewka
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

The article shows results of studies of primary crystallization and wear resistance of Cr-Ni-Mo cast steel intended for work in corrosive

and abrasive conditions. The studies of primary crystallization were conducted with use of TDA method and modified tester allowing

measurement casting cooling time influence on the cooling and crystallization curves of studied alloys. After heat treatment of examined

cast steel wear tests of the samples were conducted on pin-on-disc type device.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
J. Szajnar
J. Suchoń
M. Gromczyk

This page uses 'cookies'. Learn more