Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The possibility of a normal distribution indicates that few particles are in the same phase during a breath and their reflections can be observed on the chest wall, then a few explosive waves with relatively large power occurr occasionally. Therefore, the one-cycle sine wave which is simulated as a single burst of the explosive effect phenomenon penetrates through the chest wall and was analysed to explore the reason of the crackle sounds. The results explain the differences between the definitions of crackle proposed by Sovijärvi et al. (2000a). The crackles in the lungs were synthesised by a computer simulation. When the coarse crackles occur, the results indicate that higher burst frequency carriers (greater than 100 Hz) directly penetrate the bandpass filter to simulate the chest wall. The simulated coarse crackle sounds were low pitched, with a high amplitude and long duration. The total duration was greater than 10 ms. However, for a lower frequency carrier (approximately 50 Hz), the fundamental frequency component was filtered out. Therefore, the second harmonic component of the lower frequency carrier, i.e., the fine crackle, penetrated the chest wall. Consequently, it is very possible that the normal lung sounds may contain many crackle-shaped waves with very small amplitudes because of the filtering effects of the chest wall, environment noises, electric devices, stethoscopes, and human ears, the small crackles disappear in the auscultations. In addition, our study pointed out that some unknown crackles of the very low frequency under the bandwidth of the human ears cannot penetrate the airways and be detected by medical doctors. Therefore, it might be necessary to focus advanced electronic instrumentation on them in order to analyse their possible characteristics for diagnosis and treatment of the respiration system.
Go to article

Authors and Affiliations

Bing-Yuh Lu
1 2
Meng-Lun Hsueh
3
Huey-Dong Wu
4

  1. Faculty of Automation, Guangdong University of Petrochemical Technology, No. 139, Sec. 2, Guando Road, Maoming City, Guangdong 525000, China
  2. Department of Electronic Engineering, Tungnan University, No. 152, Sec. 3., BeiShen Rd., ShenKeng Dist., New Taipei City 22202, Taiwan (R.O.C.)
  3. Department of Electronic Engineering, Hwa Hsia University of Technology, No. 111, Gongzhuan Rd., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)
  4. Section of Respiration Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City 100, Taiwan (R.O.C.)

This page uses 'cookies'. Learn more