Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 45
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The convolution operation used in deterministic network calculus differs from its counterpart known from the classic systems theory. A reason for this lies in the fact that the former is defined in terms of the so-called min-plus algebra. Therefore, it is oft difficult to realize how it really works. In these cases, its graphical interpretation can be very helpful. This paper is devoted to a topic of construction of the min-plus convolution curve. This is done here in a systematic way to avoid arriving at non-transparent figures that are presented in publications. Contrary to this, our procedure is very transparent and removes shortcomings of constructions known in the literature. Some examples illustrate its usefulness.
Go to article

Authors and Affiliations

Andrzej Borys
Download PDF Download RIS Download Bibtex

Abstract

The Convolutional Neural Network (CNN) model is one of the most effective models for load forecasting with hyperparameters which can be used not only to determine the CNN structure and but also to train the CNN model. This paper proposes a framework for Grid Search hyperparameters of the CNN model. In a training process, the optimal models will specify conditions that satisfy requirement for minimum of accuracy scores of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). In the testing process, these optimal models will be used to evaluate the results along with all other ones. The results indicated that the optimal models have accuracy scores near the minimum values. Load demand data of Queensland (Australia) and Ho Chi Minh City (Vietnam) were utilized to verify the accuracy and reliability of the Grid Search framework.
Go to article

Bibliography

[1] Walther J., Spanier D., Panten N., Abele E., Very short-term load forecasting on factory level – A machine learning approach, Procedia CIRP, vol. 80, pp. 705–710 (2019).
[2] Aydarous A.A., Elshahed M.A., Hassan M.M.A., Short-Term Load Forecasting Approach Based on Different Input Methods of One Variable: Conceptual and Validation Study, 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, pp. 179–184 (2018).
[3] Raza M.Q., Khosravi A., A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings, Renew. Sustain. Energy Rev., vol. 50, pp. 1352–1372 (2015).
[4] Walther J., Spanier D., Panten N., Abele E., Very short-term load forecasting on factory level – A machine learning approach, Procedia CIRP, vol. 80, pp. 705–710 (2019).
[5] Khan S., Javaid N., Chand A., Abbasi R.A., Khan A.B.M., Faisal H.M., Forecasting day, week and month ahead electricity load consumption of a building using empirical mode decomposition and extreme learning machine, 2019 15th InternationalWireless Communications and Mobile Computing Conference (IWCMC), Tangier, Morocco, pp. 1600–1605 (2019).
[6] Joshi M., Singh R., Short-term load forecasting approaches: A review, International Journal of Recent Engineering Research and Development (IJRERD), no. 01, pp. 9–17 (2015).
[7] Cao Z., Member S., Wan C., Zhang Z., Hybrid Ensemble Deep Learning for Deterministic and Probabilistic Low-voltage Load Forecasting, IEEE Trans. Power Syst., p. 1 (2019).
[8] Yu Y., Ji T.Y., Li M.S., Wu Q.H., Short-term Load Forecasting Using Deep Belief Network with Empirical Mode Decomposition and Local Predictor, 2018 IEEE Power and Energy Society General Meeting (PESGM), Portland, OR, pp. 1–5 (2018).
[9] Yang J.,Wang Q., A Deep Learning Load Forecasting Method Based on Load Type Recognition, 2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, pp. 173–177 (2018).
[10] Krishnakumari K., Sivasankar E., Radhakrishnan S., Hyperparameter tuning in convolutional neural networks for domain adaptation in sentiment classification (HTCNN-DASC), Soft Comput., vol. 24, no. 5, pp. 3511–3527 (2020).
[11] Subramanian S.V., Rao A.H., Deep-learning based time series forecasting of go-around incidents in the national airspace system, AIAA Model. Simul. Technol. Conf. 2018, no. 209959 (2018).
[12] Zahid M. et al., Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids, Electronics, vol. 8, no. 2, pp. 1–32 (2019).
[13] Nurshazlyn Mohd Aszemi, Dhanapal Durai Dominic Panneer Selvam, Hyperparameter optimization in convolutional neural network using genetic algorithms, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6, pp. 269–278 (2019).
[14] Brownlee J., Deep Learning for Time Series Forecasting, Ebook (2019).
[15] https://keras.io/optimizers/
[16] Brownlee J., Deep Learning with Python, Ebook (2019).
[17] Chen K., Chen K., Wang Q., He Z., Hu J., He J., Short-Term Load Forecasting With Deep Residual Networks, IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3943–3952 (2019).
[18] Jojo Moolayil, Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python, Apress (2018).
[19] Xishuang Dong, Lijun Qian, Lei Huang, Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach, IEEE Int. Conf. Big Data Smart Comput., pp. 119–125 (2017).
[20] Dong X., Qian L., Huang L., A CNN based bagging learning approach to short-term load forecasting in smart grid, 2017 SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, San Francisco, CA, 2017, pp. 1–6 (2017).
[21] Voß M., Bender-Saebelkampf C., Albayrak S., Residential Short-Term Load Forecasting Using Convolutional Neural Networks, 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, 2018, pp. 1–6 (2018).
[22] Amarasinghe K., Marino D.L., Manic M., Deep neural networks for energy load forecasting, IEEE Int. Symp. Ind. Electron., pp. 1483–1488 (2017).
[23] Koprinska I., Wu D., Wang Z., Convolutional Neural Networks for Energy Time Series Forecasting, Proc. Int. Jt. Conf. Neural Networks, pp. 1–8 (2018), DOI: 10.1109/IJCNN.2018.8489399.
[24] Valentino Zocca et al., Python Deep Learning, Packt Publishing (2019).
[25] https://www.aemo.com.au/
[26] Haiqing Liu, Weijian Lin, Yuancheng Li, Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69, no. 2, pp. 271–286 (2020).
[27] Wang Y., Ma X., Wang F., Hou X., Sun H., Zheng K., Dynamic electric vehicles charging load allocation strategy for residential area, Archives of Electrical Engineering, vol. 67, no. 3, pp. 641–654 (2018).
Go to article

Authors and Affiliations

Thanh Ngoc Tran
1

  1. Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Commonly known DC-AC switching converters are commonly used in compensator branches. One example of this is a static synchronous compensator (STATCOM). It consists of a voltage source converter (VSC) and acts as an inverter with a capacitor as a DC power source. These compensators use the PWM switching scheme or space vector modulation (SVM) method. Both methods require the desired signal to be generated. In some cases, as during the synthesis of self-excited systems or active energy-compensators, it is necessary to perform the desired branch immittance, e.g. negative capacitance, inductance, resistance or irrational impedance. In such cases, it is necessary to control the universal branch on the basis of a formula. This article presents the implementation method for the convolutional type impedance operators.

Go to article

Authors and Affiliations

M. Siwczyński
M. Jaraczewski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we have researched implementing convolutional neural network (CNN) models for devices with limited resources, such as smartphones and embedded computers. To optimize the number of parameters of these models, we studied various popular methods that would allow them to operate more efficiently. Specifically, our research focused on the ResNet-101 and VGG-19 architectures, which we modified using techniques specific to model optimization. We aimed to determine which approach would work best for particular requirements for a maximum accepted accuracy drop. Our contribution lies in the comprehensive ablation study, which presents the impact of different approaches on the final results, specifically in terms of reducing model parameters, FLOPS, and the potential decline in accuracy. We explored the feasibility of implementing architecture compression methods that can influence the model’s structure. Additionally, we delved into post-training methods, such as pruning and quantization, at various model sparsity levels. This study builds upon our prior research [1] to provide a more comprehensive understanding of the subject matter at hand.
Go to article

Authors and Affiliations

Artur Sobolewski
1
Kamil Szyc
1

  1. Wrocław University of Scienceand Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Time invariant linear operators are the building blocks of signal processing. Weighted circular convolution and signal processing framework in a generalized Fourier domain are introduced by Jorge Martinez. In this paper, we prove that under this new signal processing framework, weighted circular convolution also has a generalized time invariant property. We also give an application of this property to algorithm of continuous wavelet transform (CWT). Specifically, we have previously studied the algorithm of CWT based on generalized Fourier transform with parameter 1. In this paper, we prove that the parameter can take any complex number. Numerical experiments are presented to further demonstrate our analyses.
Go to article

Bibliography

  1.  N. Holighaus, G. Koliander, Z. Průša, and L.D. Abreu, “Characterization of Analytic Wavelet Transforms and a New Phaseless Reconstruction Algorithm,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3894–3908, 2019.
  2.  M. Rayeezuddin, B. Krishna Reddy, and D. Sudheer Reddy, “Performance of reconstruction factors for a class of new complex continuous wavelets,” Int. J. Wavelets Multiresolution Inf. Process., vol. 19, no. 02, p. 2050067, 2021, doi: 10.1142/S0219691320500678.
  3.  Y. Guo, B.-Z. Li, and L.-D. Yang, “Novel fractional wavelet transform: Principles, MRA and application,” Digital Signal Process., vol. 110, p. 102937, 2021. [Online]. Available: doi: 10.1016/j.dsp.2020.102937.
  4.  V.K. Patel, S. Singh, and V.K. Singh, “Numerical wavelets scheme to complex partial differential equation arising from Morlet continuous wavelet transform,” Numer. Methods Partial Differ. Equations, vol. 37, no. 2, pp. 1163–1199, mar 2021.
  5.  C.K. Chui, Q. Jiang, L. Li, and J. Lu, “Signal separation based on adaptive continuous wavelet-like transform and analysis,” Appl. Comput. Harmon. Anal., vol. 53, pp. 151‒179, 2021.
  6.  O. Erkaymaz, I.S. Yapici, and R.U. Arslan, “Effects of obesity on time-frequency components of electroretinogram signal using continuous wavelet transform,” Biomed. Signal Process. Control, vol. 66, p. 102398, 2021.
  7.  Z. Yan, P. Chao, J. Ma, D. Cheng, and C. Liu, “Discrete convolution wavelet transform of signal and its application on BEV accident data analysis,” Mech. Syst. Signal Process., vol. 159, 2021.
  8.  R. Bardenet and A. Hardy, “Time-frequency transforms of white noises and Gaussian analytic functions,” Appl. Comput. Harmon. Anal., vol. 50, pp. 73–104, 2021, doi: 10.1016/j.acha.2019.07.003.
  9.  M.X. Cohen, “A better way to define and describe Morlet wavelets for time-frequency analysis,” NeuroImage, vol. 199, pp. 81–86, 2019. doi: 10.1016/j.neuroimage.2019.05.048.
  10.  H. Yi and H. Shu, “The improvement of the Morlet wavelet for multi-period analysis of climate data,” C.R. Geosci., vol. 344, no. 10, pp. 483–497, 2012.
  11.  S.G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2009.
  12.  H. Yi, P. Ouyang, T. Yu, and T. Zhang, “An algorithm for Morlet wavelet transform based on generalized discrete Fourier transform,” Int. J. Wavelets Multiresolution Inf. Process., vol. 17, no. 05, p. 1950030, 2019, doi: 10.1142/S0219691319500309.
  13.  R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transform and Convolution. Springer, 1997.
  14.  J.-M. Attendu and A. Ross, “Method for finding optimal exponential decay coefficient in numerical Laplace transform for application to linear convolution,” Signal Process., vol. 130, pp. 47–56, 2017.
  15.  W. Li and A.M. Peterson, “FIR Filtering by the Modified Fermat Number Transform,” IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 9, pp. 1641–1645, 1990.
  16.  M.J. Narasimha, “Linear Convolution Using Skew-Cyclic Convolutions,” Signal Process. Lett., vol. 14, no. 3, pp. 173–176, 2007.
  17.  J. Martinez, R. Heusdens, and R.C. Hendriks, “A Generalized Poisson Summation Formula and its Application to Fast Linear Convolution,” IEEE Signal Process Lett., vol. 18, no. 9, pp. 501–504, 2011.
  18.  R.C. Guido, F. Pedroso, A. Furlan, R.C. Contreras, L.G. Caobianco, and J.S. Neto, “CWT×DWT×DTWT×SDTWT: Clarifying terminologies and roles of different types of wavelet transforms,” Int. J. Wavelets Multiresolution Inf. Process., vol. 18, no. 06, p. 2030001, 2020, doi: 10.1142/S0219691320300017.
  19.  P. Kapler, “An application of continuous wavelet transform and wavelet coherence for residential power consumer load profiles analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e136216, 2021, doi: 10.24425/bpasts.2020.136216.
  20.  J. Martinez, R. Heusdens, and R.C. Hendriks, “A generalized Fourier domain: Signal processing framework and applications,” Signal Process., vol. 93, no. 5, pp. 1259‒1267, 2013.
  21.  S. Hui and S.H. Żak, “Discrete Fourier transform and permutations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 6, pp. 995–1005, 2019.
  22.  Z. Babic and D.P. Mandic, “A fast algorithm for linear convolution of discrete time signals,” in 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517), vol. 2, 2001, pp. 595–598.
  23.  H. Yi, S. Y. Xin, and J. F. Yin, “A Class of Algorithms for ContinuousWavelet Transform Based on the Circulant Matrix,” Algorithms, vol. 11, no. 3, p. 24, 2018.
  24.  D. Spałek, “Two relations for generalized discrete Fourier transform coefficients,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 3, pp. 275– 281, 2018, doi: 10.24425/123433.
Go to article

Authors and Affiliations

Hua Yi
1
ORCID: ORCID
Yu-Le Ru
1
Yin-Yun Dai
1

  1. School of Mathematics and Physics, Jinggangshan University, Ji’an, 343009, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

To better extract feature maps from low-resolution (LR) images and recover high-frequency information in the high-resolution (HR) images in image super-resolution (SR), we propose in this paper a new SR algorithm based on a deep convolutional neural network (CNN). The network structure is composed of the feature extraction part and the reconstruction part. The extraction network extracts the feature maps of LR images and uses the sub-pixel convolutional neural network as the up-sampling operator. Skip connection, densely connected neural networks and feature map fusion are used to extract information from hierarchical feature maps at the end of the network, which can effectively reduce the dimension of the feature maps. In the reconstruction network, we add a 3×3 convolution layer based on the original sub-pixel convolution layer, which can allow the reconstruction network to have better nonlinear mapping ability. The experiments show that the algorithm results in a significant improvement in PSNR, SSIM, and human visual effects as compared with some state-of-the-art algorithms based on deep learning.
Go to article

Authors and Affiliations

Xin Yang
1
Yifan Zhang
1
Dake Zhou
1

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, Jiangsu, China
Download PDF Download RIS Download Bibtex

Abstract

Active acoustics offers potential benefits in music halls having acoustical short-comings and is a relatively inexpensive alternative to physical modifications of the enclosures. One critical benefit of active architecture is the controlled variability of acoustics. Although many improvements have been made over the last 60 years in the quality and usability of active acoustics, some problems still persist and the acceptance of this technology is advancing cautiously. McGill's Virtual Acoustic Technology (VAT) offers new solutions in the key areas of performance by focusing on the electroacoustic coupling between the existing room acoustics and the simulation acoustics. All control parameters of the active acoustics are implemented in the Space Builder engine by employing multichannel parallel mixing, routing, and processing. The virtual acoustic response is created using low-latency convolution and a three-way temporal segmentation of the measured impulse responses. This method facilitates a sooner release of the virtual room response and its radiation into the surrounding space. Field tests are currently underway at McGill University involving performing musicians and the audience in order to fully assess and quantify the benefits of this new approach in active acoustics.

Go to article

Authors and Affiliations

Wiesław Woszczyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper the way of modeling phenomena occurring during the voltage and current waves passing through a point connection of two lines, with different wave impedance operators, is presented. This connection point is called „the wave transformer”. The analyzes and the resulting formulas concern not the frequency domain, but the time domain. The appropriate transition matrices of waves through the wave transformer are defined. This matrices are the convolution integral-derivative operators of fractional order (the digital filters). For a lossless line the wave transition matrices through the wave transformer become number type instead of operator type. All matrix multiplications occurring in the formulas should be understood in convolution way.

Go to article

Authors and Affiliations

Maciej Siwczyński
Andrzej Drwal
Sławomir Żaba
Download PDF Download RIS Download Bibtex

Abstract

At present, most of the existing target detection algorithms use the method of region proposal to search for the target in the image. The most effective regional proposal method usually requires thousands of target prediction areas to achieve high recall rate.This lowers the detection efficiency. Even though recent region proposal network approach have yielded good results by using hundreds of proposals, it still faces the challenge when applied to small objects and precise locations. This is mainly because these approaches use coarse feature. Therefore, we propose a new method for extracting more efficient global features and multi-scale features to provide target detection performance. Given that feature maps under continuous convolution lose the resolution required to detect small objects when obtaining deeper semantic information; hence, we use rolling convolution (RC) to maintain the high resolution of low-level feature maps to explore objects in greater detail, even if there is no structure dedicated to combining the features of multiple convolutional layers. Furthermore, we use a recurrent neural network of multiple gated recurrent units (GRUs) at the top of the convolutional layer to highlight useful global context locations for assisting in the detection of objects. Through experiments in the benchmark data set, our proposed method achieved 78.2% mAP in PASCAL VOC 2007 and 72.3% mAP in PASCAL VOC 2012 dataset. It has been verified through many experiments that this method has reached a more advanced level of detection.

Go to article

Authors and Affiliations

WenQing Huang
MingZhu Huang
YaMing Wang
Download PDF Download RIS Download Bibtex

Abstract

A high accurate electronic instrument transformer calibration system is introduced in this paper. The system uses the fourth-order convolution window algorithm for the error calculation method. Compared with Fast Fourier Transform, which is recommended by standard IEC-60044-8 (Electronic current transformers), it has higher accuracy. The relative measuring errors caused by asynchronous sampling could be reduced effectively without any special hardware technique adopted. The results show that the ratio error caused by asynchronous sampling can be reduced to 10-4, and the phase error can be reduced to 10-3 degrees when the deviation of frequency is within ±0.5 Hz. The present method of measurement processing is achieved by a high-accuracy USB multifunction data acquisition (DAQ) card and virtual measurement devices, with low cost, short exploitation period and high stability.

Go to article

Authors and Affiliations

Yue Tong
Guoxiong Ye
Keqin Guo
Hongbin Li
Download PDF Download RIS Download Bibtex

Abstract

In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville equations. Moreover, we present Volterra convolution equations, that are equivalent to Caputo and Riemann-Liouvile equations and we also show an explicit formula for the solution of systems of time-invariant Caputo equations.

Go to article

Authors and Affiliations

P.T. Anh
A. Babiarz
A. Czornik
M. Niezabitowski
S. Siegmund
Download PDF Download RIS Download Bibtex

Abstract

Detection of audio spoofing attacks has become vital for automatic speaker verification systems. Spoofing attacks can be obtained with several ways, such as speech synthesis, voice conversion, replay, and mimicry. Extracting discriminative features from speech data can improve the accuracy of detecting these attacks. In fact, a frame-wise weighted magnitude spectrum is found to be effective to detect replay attacks recently. In this work, discriminative features are obtained in a similar fashion (frame-wise weighting), however, a cosine normalized phase spectrum is used since phase-based features have shown decent performance for the given task. The extracted features are then fed to a convolutional neural network as input. In the experiments ASVspoof 2015 and 2017 databases are used to investigate the proposed system’s spoof detection performance for both synthetic and replay attacks, respectively. The results showed that the proposed approach achieved 34.5% relative decrease in the average EER for ASVspoof 2015 evaluation set, compared to the ordinary cosine normalized phase features. Furthermore, the proposed system outperformed the others at detecting S10 attack type of ASVspoof 2015 database.
Go to article

Authors and Affiliations

Gökay Dişken
1

  1. Department of Electrical-Electronics Engineering, Adana Alparslan Türkes Science and Technology University, Adana, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In the last few years, a great attention was paid to the deep learning Techniques used for image analysis because of their ability to use machine learning techniques to transform input data into high level presentation. For the sake of accurate diagnosis, the medical field has a steadily growing interest in such technology especially in the diagnosis of melanoma. These deep learning networks work through making coarse segmentation, conventional filters and pooling layers. However, this segmentation of the skin lesions results in image of lower resolution than the original skin image. In this paper, we present deep learning based approaches to solve the problems in skin lesion analysis using a dermoscopic image containing skin tumor. The proposed models are trained and evaluated on standard benchmark datasets from the International Skin Imaging Collaboration (ISIC) 2018 Challenge. The proposed method achieves an accuracy of 96.67% for the validation set .The experimental tests carried out on a clinical dataset show that the classification performance using deep learning-based features performs better than the state-of-the-art techniques.

Go to article

Authors and Affiliations

Fatma Sherif
Wael A. Mohamed
A.S. Mohra
Download PDF Download RIS Download Bibtex

Abstract

Accurate and fast access to Vernier caliper readings is a critical issue in automated verification of Vernier calipers. To address this problem, this paper proposes a machine vision-based algorithm for reading the Vernier caliper’s displayed value. The suggested method first employs threshold segmentation and template matching to determine the region of interest and obtain the main ruler digit position by alternate projection. Then, we apply the improved LeNet5 network to identify the main ruler of the Vernier caliper, Moreover, we developed the first and last inscription method for reading the decimal part of the Vernier caliper and established our data set for model training. Extensive experiments on reading the displayed value have demonstrated our algorithm’s accuracy, which achieves a displayed value reading accuracy of 100%. Compared to other methods, the proposed technique affords better stability and accuracy.
Go to article

Authors and Affiliations

Wen-Meng Chen
1
Hong-Xi Wang
1
Guan-Wei Wang
1
Wen-Hong Liang
1

  1. Xi’an Technological University, School of Electrical and Mechanical Engineering, Xi’an, Shanxi 710021 China
Download PDF Download RIS Download Bibtex

Abstract

Thousands of low-power micro sensors make up Wireless Sensor Networks, and its principal role is to detect and report specified events to a base station. Due to bounded battery power these nodes are having very limited memory and processing capacity. Since battery replacement or recharge in sensor nodes is nearly impossible, power consumption becomes one of the most important design considerations in WSN. So one of the most important requirements in WSN is to increase battery life and network life time. Seeing as data transmission and reception consume the most energy, it’s critical to develop a routing protocol that addresses the WSN’s major problem. When it comes to sending aggregated data to the sink, hierarchical routing is critical. This research concentrates on a cluster head election system that rotates the cluster head role among nodes with greater energy levels than the others.We used a combination of LEACH and deep learning to extend the network life of the WSN in this study. In this proposed method, cluster head selection has been performed by Convolutional Neural Network (CNN). The comparison has been done between the proposed solution and LEACH, which shows the proposed solution increases the network lifetime and throughput.
Go to article

Authors and Affiliations

Hardik K Prajapati
1
Rutvij Joshi
2

  1. Gujarat Technological University, Ahmedabad, Gujarat, India
  2. Parul University, Vadodara, Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

Skin Cancer is one of the most widely present forms of cancer. The correct classification of skin lesions as malignant or benign is a complex process that has to be undertaken by experienced specialists. Another major issue of the class imbalance of data causes a bias in the results of classification. This article presents a novel approach to the usage of metadata of skin lesions' images to classify them. The usage of techniques addresses the problem of class imbalance to nullify the imbalances. Further, the use of a convolutional neural network (CNN) is proposed to finetune the skin lesion data classification. Ultimately, it is proven that an ensemble of statistical metadata analysis and CNN usage would result in the highest accuracy of skin color classification instead of using the two techniques separately.
Go to article

Authors and Affiliations

Sachin Nayak
1
Shweta Vincent
1
Sumathi K
2
Om Prakash Kumar
3
Sameena Pathan
4

  1. Department of Mechatronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
  2. Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
  3. Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
  4. Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

Authors and Affiliations

Jianwei Wang
1 2
ORCID: ORCID
Deyun Chen
1

  1. College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
  2. College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin 150050, China
Download PDF Download RIS Download Bibtex

Abstract

In industrial drive systems, one of the widest group of machines are induction motors. During normal operation, these machines are exposed to various types of damages, resulting in high economic losses. Electrical circuits damages are more than half of all damages appearing in induction motors. In connection with the above, the task of early detection of machine defects becomes a priority in modern drive systems. The article presents the possibility of using deep neural networks to detect stator and rotor damages. The opportunity of detecting shorted turns and the broken rotor bars with the use of an axial flux signal is presented.

Go to article

Authors and Affiliations

M. Skowron
Download PDF Download RIS Download Bibtex

Abstract

In this paper deep neural networks are proposed to diagnose inter-turn short-circuits of induction motor stator windings operating under the Direct Field Oriented Control method. A convolutional neural network (CNN), trained with a Stochastic Gradient Descent with Momentum method is used. This kind of deep-trained neural network allows to significantly accelerate the diagnostic process compared to the traditional methods based on the Fast Fourier Transform as well as it does not require stationary operating conditions. To assess the effectiveness of the applied CNN-based detectors, the tests were carried out for variable load conditions and different values of the supply voltage frequency. Experimental results of the proposed induction motor fault detection system are presented and discussed.

Go to article

Authors and Affiliations

M. Skowron
M. Wolkiewicz
G. Tarchała
Download PDF Download RIS Download Bibtex

Abstract

Voice acoustic analysis can be a valuable and objective tool supporting the diagnosis of many neurodegenerative diseases, especially in times of distant medical examination during the pandemic. The article compares the application of selected signal processing methods and machine learning algorithms for the taxonomy of acquired speech signals representing the vowel a with prolonged phonation in patients with Parkinson’s disease and healthy subjects. The study was conducted using three different feature engineering techniques for the generation of speech signal features as well as the deep learning approach based on the processing of images involving spectrograms of different time and frequency resolutions. The research utilized real recordings acquired in the Department of Neurology at the Medical University of Warsaw, Poland. The discriminatory ability of feature vectors was evaluated using the SVM technique. The spectrograms were processed by the popular AlexNet convolutional neural network adopted to the binary classification task according to the strategy of transfer learning. The results of numerical experiments have shown different efficiencies of the examined approaches; however, the sensitivity of the best test based on the selected features proposed with respect to biological grounds of voice articulation reached the value of 97% with the specificity no worse than 93%. The results could be further slightly improved thanks to the combination of the selected deep learning and feature engineering algorithms in one stacked ensemble model.
Go to article

Bibliography

  1.  Y.D. Kumar and A.M. Prasad, “MEMS accelerometer system for tremor analysis”, Int. J Adv. Eng. Global Technol. 2(5), 685‒693 (2014).
  2.  P. Pierleoni, “A Smart Inertial System for 24h Monitoring and Classification of Tremor and Freezing of Gait in Parkinson’s Disease”, IEEE Sens. J. 19(23), 11612‒11623 (2019).
  3.  W. Pawlukowska, K. Honczarenko, and M. Gołąb-Janowska, “Nature of speech disorders in Parkinson disease”, Pol. Neurol. Neurosurg. 47(3), 263‒269 (2013), [in Polish].
  4.  S.A. Factor, Parkinson’s Disease: Diagnosis & Clinical Management, 2nd Edition, 2002.
  5.  R. Chiaramonte and M. Bonfiglio, “Acoustic analysis of voice in Parkinson’s disease: a systematic review of voice disability and meta- analysis of studies”, Rev. Neurologia 70(11), 393‒405 (2020).
  6.  Jiri Mekyska, et al., “Robust and complex approach of pathological speech signal analysis”, Neurocomputing 167, 94‒111 (2015).
  7.  B. Erdogdu Sakar, G. Serbes, C. Sakar, “Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease”, PLoS One 12, 8 (2017)
  8.  L. Berus, S. Klancnik, M. Brezocnik, and M. Ficko, “Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks”, Sensors (Basel) 19(1), 16 (2019).
  9.  L. Jeancolas et al., “Automatic detection of early stages of Parkinson’s disease through acoustic voice analysis with mel-frequency cepstral coefficients”, 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, pp. 1‒6.
  10.  D.A. Rahn, M. Chou, J.J. Jiang, and Y.Zhang, “Phonatory impairment in Parkinson’s disease: evidence from nonlinear dynamic analysis and perturbation analysis”, J. Voice 21, 64‒71 (2007).
  11.  J. Kurek, B. Świderski, S. Osowski, M. Kruk, and W. Barhoumi, “Deep learning versus classical neural approach to mammogram recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840 (2018).
  12.  S. Sivaranjini and C.M. Sujatha, “Deep learning based diagnosis of Parkinson’s disease using convolutional neural network”, Multimed. Tools Appl. 79, 15467–15479 (2020).
  13.  M. Wodziński, A. Skalski, D. Hemmerling, J.R. Orozco-Arroyave, and E. Noth, “Deep Learning Approach to Parkinson’s Disease Detection Using Voice Recordings and Convolutional Neural Network Dedicated to Image Classification” 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 717‒720.
  14.  J. Chmielińska, K. Białek, A. Potulska-Chromik, J. Jakubowski, E. Majda-Zdancewicz, M. Nojszewska, A. Kostera-Pruszczyk and A. Dobrowolski, “Multimodal data acquisition set for objective assessment of Parkinson’s disease”, Proc. SPIE 11442, Radioelectronic Systems Conference 2019, 114420F (2020).
  15.  M. Kuhn, K. Johnson, Applied predictive modeling, New York: Springer, 2013.
  16.  P. Liang, C. Deng, J. Wu, Z. Yang, and J. Zhu, “Intelligent Fault Diagnosis of Rolling Element Bearing Based on Convolutional Neural Network and Frequency Spectrograms” 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, USA, 2019, pp. 1‒5.
  17.  M.S. Wibawa, I.M.D. Maysanjaya, N.K.D.P. Novianti, and P.N. Crisnapati, “Abnormal Heart Rhythm Detection Based on Spectrogram of Heart Sound using Convolutional Neural Network”, 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 2019, pp. 1‒4.
  18.  M. Curilem, J.P. Canário, L. Franco, and R.A. Rios, “Using CNN To Classify Spectrograms of Seismic Events From Llaima Volcano (Chile)”, 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 2018, pp. 1‒8.
  19.  D. Rethage, J. Pons and X. Serra, “A Wavenet for Speech Denoising”, 2018 IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, pp. 5069‒5073.
  20.  A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classifi-cation with deep convolutional neural networks”, Neural Infor-mation Processing Systems, 2012.
  21.  J. Jakubowski and J. Chmielińska, “Detection of driver fatigue symptoms using transfer learning”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 869‒874 (2018).
  22.  A. Benba, A. Jilbab, and A. Hammouch, “Voice analysis for detecting persons with Parkinson’s disease using MFCC and VQ”, International conference on circuits, systems and signal processing (ICCSSP’14), Russia, 2014.
  23.  E. Niebudek-Bogusz, J. Grygiel, P. Strumiłło, and M. Śliwińska-Kowalska, “Nonlinear acoustic analysis in the evaluation of occupational voice disorders”, Occupational Medicine, 64(1), 29–35 (2013), [in Polish].
  24.  E. Majda and A.P. Dobrowolski, “Modeling and optimization of the feature generator for speaker recognition systems”, Electr. Rev. 88(12A), 131‒136 (2012).
  25.  Y. Maryn, N. Roy, M. De Bodt, P.B. van Cauwenberge, P. Corthals, “Acoustic measurement of overall voice quality: a meta-analysis”, J. Acoust. Soc. Am. 126(5), 2619‒2634 (2009), doi: 10.1121/1.3224706.
  26.  E. Niebudek-Bogusz, J. Grygiel, P. Strumiłło, and M. Śliwińska-Kowalska, “Mel cepstral analysis of voice in patients with vocal nodules”, Otorhinolaryngology 10(4), 176‒181 (2011), [in Polish].
  27.  A. Krysiak, “Language, speech and communication disorders in Parkinson’s disease”, Neuropsychiatr. Neuropsychol. 6(1), 36–42 (2011), [in Polish].
  28.  F. Alías, J.C. Socoró, and X. Sevillano, “A Review of Physical and Perceptual Feature Extraction Techniques for Speech, Music and Environmental Sounds”, Appl. Sci. 6(5), 143 (2016).
  29.  X. Valero and F. Alias, “Gammatone Cepstral Coefficients: Biologically InspiredFeatures for Non-Speech Audio Classification”, IEEE Trans. Multimedia 14(6), 1684‒1689 (2012).
  30.  S. Malcolm, “An Efficient Implementation of the Patterson-Holdworth Auditory Filter Bank”, 35. Apple Computer Technical Report, 1993.
  31.  D.M. Agrawal, H.B. Sailor, M.H. Soni, and H.A. Patil, “Novel TEO-based gammatone features for environmental sound classification”, 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 2017, pp. 1809‒1813.
  32.  S. Russel and P. Norvig, Artificial intelligence – a modern approach, Upper Saddle River: Pearson Education, 2010.
  33.  A. Chatzimparmpas, R.M. Martins, K. Kucher, and A. Kerren, “StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics”, IEEE Transactions on Visualization and Computer Graphics 27(2), 1547‒1557 (2021), doi: 10.1109/TVCG.2020.3030352.
Go to article

Authors and Affiliations

Ewelina Majda-Zdancewicz
1
ORCID: ORCID
Anna Potulska-Chromik
2
ORCID: ORCID
Jacek Jakubowski
1
ORCID: ORCID
Monika Nojszewska
2
ORCID: ORCID
Anna Kostera-Pruszczyk
2
ORCID: ORCID

  1. Faculty of Electronics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Department of Neurology, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present a failure detection system in sensors of any robot. It is based on the k-fold cross-validation approach and built from N neural networks, where N is the number of signals read from sensors. Our tests were carried out using an unmanned aerial vehicle (UAV, quadrocopter), where signals were read from three sensors: accelerometer, magnetometer and gyroscope. Artificial neural network was used to determine Euler angles, based on signals from these sensors. The presented system is an extension of the system that we proposed in one of our previous papers. The improvement shown in this work took place on two levels. The first one was related to improvement of a neural network՚s reproduction quality – we have replaced a recurrent neural network with a convolutional one. The second level was associated with the improvement of the validation process, i.e. with adding some new criteria to check the values of Euler՚s angles determined by the convolutional neural network in subsequent time steps. To highlight the proposed system improvement we present a number of indicators such as RMSE, NRMSE and NDR (Normalized Detection Ratio).

Go to article

Authors and Affiliations

A. Świetlicka
K. Kolanowski
Download PDF Download RIS Download Bibtex

Abstract

The current machine vision-based surface roughness measurement mainly relies on the design of feature indicators associated with roughness to measure the surface roughness. However, the process is tedious and complicated. Moreover, most existing deep learning methods for workpiece surface roughness measurement use a monochromatic light source to acquire images. In the case of surface roughness in a grinding process with low roughness and random texture characteristics, the feature information obtained by monochromatic light source acquisition is relatively small. It is difficult to extract the workpiece surface roughness features, which can easily cause problems for subsequent measurement. Based on the problems above, this paper proposes a grinding surface roughness measurement method combining red-green information and a convolutional neural network. The technique uses a particular red-green block to highlight the grinding surface texture features. Finally, it classifies the grinding surface roughness measurement with a classification detection technique of the convolutional neural network. Experimental results show that the accuracy of the grinding surface roughness measurement method combining red-green information and the convolutional neural network is significantly improved compared with that of the grinding surface roughness measurement method without using the red-green data.
Go to article

Authors and Affiliations

Jiefeng Huang
1 2
Huaian Yi
1 2
Runji Fang
1 2
Kun Song
1 2

  1. Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Guilin, China, 541006
  2. School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, China, 541006
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, we investigate a multi-server Erlang queueing system with heterogeneous servers, non-homogeneous customers and limited memory space. The arriving customers appear according to a stationary Poisson process and are additionally characterized by some random volume. The service time of the customer depends on his volume and the joint distribution function of the customer volume and his service time can be different for different servers. The total customers volume is limited by some constant value. For the analyzed model, steady-state distribution of number of customers present in the system and loss probability are calculated. An analysis of some special cases and some numerical examples are attached as well.

Go to article

Authors and Affiliations

O. Tikhonenko
M. Ziółkowski
M. Kurkowski
Download PDF Download RIS Download Bibtex

Abstract

Virtual or active acoustics refers to the generation of a simulated room response by means of electroacoustics and digital signal processing. An artificial room response may include sound reflections and reverberation as well as other acoustic features mimicking the actual room. They will cause the listener to have an impression of being immersed in virtual acoustics of another simulated room that coexists with the actual physical room. Using low-latency broadband multi-channel convolution and carefully measured room data, optimized transducers for rendering of sound fields, and an intuitive touch control user interface, it is possible to achieve a very high perceived quality of active acoustics, with a straightforward adjustability. The electroacoustically coupled room resulting from such optimization does not merely produce an equivalent of a back-door reverberation chamber, but rather a fully functional complete room superimposed on the physical room, yet with highly selectable and adjustable acoustic response. The utility of such active system for music recording and performance is discussed and supported with examples.

Go to article

Authors and Affiliations

Wiesław Woszczyk
Doyuen Ko
Leonard Brett

This page uses 'cookies'. Learn more