Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 273
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented paper is to show the results of shape optimization of railway polynomial transition curves (TCs) of 5th, 7th, and 9th degrees through the use of the full vehicle model and new criteria of assessement concerning the jerk value. The search for the proper shape of TCs means that in this work, the evaluation of TC properties is based on select quantities and the generation of such a shape through the use of mathematically understood optimization methods. The studies presented have got a character of the numerical tests. For this work, advanced vehicle models describing dynamical track-vehicle and vehicle-passenger interactions as well as optimization methods were exploited. In the software vehicle model of a 2-axle freight car, the track discrete model, non-linear descriptions of wheel-rail contact are applied. This part of the software, the vehicle simulation software, is combined with a library optimization procedure into the final computer program.

Go to article

Authors and Affiliations

K. Zboiński
P. Woznica
Download PDF Download RIS Download Bibtex

Abstract

In this paper starch gelatinisation in Couette-Taylor flow (CTF) apparatus (equipped with a water heat jacket) has been investigated. CTF (characterised by the presence of Taylor vortices) provides good environment for gelatinisation, e.g. effective mixing, fast heat transfer, positive influence on starch rheological properties. During experiments starch gelatinisation degree and starch swelling has been studied. It was accompanied by temperature measurements performed along the apparatus. Additionally, starch gelatinisation was investigated by computer simulation. A complete starch gelatinisation was obtained for the shortest investigated residence time in the apparatus when the temperature in the heat jacket was above 85 °C. Nevertheless, it seems that it is still possible to reduce a residence time value, as well as, the value of Thj, but it may require some acceleration of rotor rotation. The swelling degree of gelatinised starch increased with growing values of residence time, rotor rotation and process temperature. Heat transferred could be affected by the structure of the Taylor vortex flow. No significant destruction of starch granules was observed during the treatment in Couette-Taylor flow apparatus. A quite satisfactory agreement between computer simulation and experiments results was achieved.

Go to article

Authors and Affiliations

Robert Hubacz
Monika Buczyńska
Download PDF Download RIS Download Bibtex

Abstract

Steel is a versatile material that has found widespread use because of its mechanical properties, its relatively low cost, and the ease with which it can be used in manufacturing process such as forming, welding and machining. Regarding to mechanical properties are strongly affected by grain size and chemical composition variations. Many industrial developments have been carried out both from the point of view of composition variation and grain size in order to exploit the effect of these variables to improve the mechanical proprieties of steels. It is also evident that grain growth are relevant to the mechanical properties of steels, thus suggesting the necessity of mathematical models able to predict the microstructural evolution after thermo cycles. It is therefore of primary importance to study microstructural changes, such as grain size variations of steels during isothermal treatments through the application of a mathematical model, able in general to describe the grain growth in metals. This paper deals with the grain growth modelling of steels based on the statistical theory of grain growth originally developed by Lücke [1] and here integrated to take into account the Zener drag effect and is therefore focused on the process description for the determination of the kinetics of grain growth curves temperature dependence.
Go to article

Authors and Affiliations

G. Napoli
A. Di Schino
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of the newly developed method of the solution of nonlinear equations to the adaptive modelling and computer simulation. The approach is suitable when the system of equations can be arranged in such a way that it consists of a large number of linear equations and a smaller number of nonlinear equations. This situation occurs in the case of adaptive modelling of mechanical systems using finite elements or finite differences techniques. In this case the classical least square method becomes very effective. The paper presents several examples of the application of the method. A solution to the, so called, “black box” problem is also presented.

Go to article

Authors and Affiliations

S.A. Łukasiewicz
M.H. Hojjati
R. Qian
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the presented research was to check mechanical response of human body model under loads that can occur during airplane accidents and compare results of analysis with some results of experimental tests described in literature. In simulations, new multi-purpose human body model, the VIRTHUMAN, was used. The whole model, as well as its particular segments, was earlier validated based on experimental data, which proved its accuracy to simulate human body dynamic response under condition typical for car crashes, but it was not validated for loads with predominant vertical component (loads acting along spinal column), typical for airplane crashes. Due to limitation of available experimental data, the authors focused on conducting calculations for the case introduced in 14 CFR: Parts 23.562 and 25.562, paragraph (b)(1), knowing as the 60 pitch test. The analysis consists in comparison of compression load measured in lumbar section of spine of the FAA HIII Dummy (experimental model) and in the Virthuman (numerical model). The performed analyses show numerical stability of the model and satisfactory agreement between experimental data and simulated Virthuman responses. In that sense, the Virthuman model, although originally developed for automotive analyses, shows also great potential to become valuable tool for applications in aviation crashworthiness and safety analyses, as well.

Go to article

Authors and Affiliations

Lukasz Lindstedt
Jan Vychytil
Tomasz Dziewonski
Ludek Hyncik
Download PDF Download RIS Download Bibtex

Abstract

There are certain well-known methods of diminishing concentrations of nitrogen compounds, but they are ineffective in case of nitrogen-rich wastewater with a low content of biodegradable carbon. Partial nitritation followed by anaerobic ammonium oxidation (Anammox) process appear to be an excellent alternative for traditional nitrification and denitrification. This paper presents the feasibility of successful start-up of Anammox process in a laboratory-scale membrane bioreactor (MBR). It was shown that the combination of membrane technology and Anammox process allowed to create a new highly efficient and compact system for nitrogen removal. It was possible to achieve average nitrogen removal efficiency equal to 76.7 ± 8.3%. It was shown that the start-up period of 6 months was needed to obtain high nitrogen removal efficiency. The applied biochemical model of the Anammox process was based on the state-of-the-art Activated Sludge Model No.1 (ASM 1) which was modified for accounting activity of autotrophs (nitrite-oxidising bacteria and nitrateoxidising bacteria) and anammox bacteria. In order to increase the predictive power of the simulation selected parameters of the model were adjusted during model calibration. Readjustment of the model parameters based on the critically evaluated data of the reactor resulted in a satisfactory match between the model predictions and the actual observations.

Go to article

Authors and Affiliations

Grzegorz Cema
Adam Sochacki
Jakub Kubiatowicz
Piotr Gutwiński
Joanna Surmacz-Górska
Download PDF Download RIS Download Bibtex

Abstract

Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κIIaffecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σtand shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear). Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing's construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.

Go to article

Authors and Affiliations

T. Pacyniak
B.P. Pisarek
D. Kołakowski
Download PDF Download RIS Download Bibtex

Abstract

Experiments of filling the model moulds cavity of various inner shapes inserted in rectangular cavity of the casting die (dimensions: 280

mm (height) x 190 mm (width) x 10 mm (depth) by applying model liquids of various density and viscosity are presented in the paper.

Influence of die venting as well as inlet system area and inlet velocity on the volumetric rate of filling of the model liquid – achieved by

means of filming the process in the system of a cold-chamber casting die was tested. Experiments compared with the results of simulation

performed by means of the calculation module Novacast (Novaflow&Solid) for the selected various casting conditions – are also

presented in the paper.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
J. Stojek
Download PDF Download RIS Download Bibtex

Abstract

The article is a case study of the steel milling ring casting of about 6 tonnes net weight. The casting has been cast in the steel foundry the authors have been cooperating with. The aim was to analyse the influence of the shape of the chills and the material which was used to make them on the casting crystallization process. To optimally design the chills the set of the computer simulation has been carried out with 3 chills’ shape versions and 3 material’s versions and the results have been compared with the technology being in use (no chills). The proposed chills were of different thermal conductivity from low to high. Their shapes were obviously dependant on the adjacent casting surface geometry but were the result of the attempt to optimise their effect with the minimum weight, too. The chills working efficiency was analysed jointly with the previously designed top feeders system. The following parameters have been chosen to compare their effectiveness and the crystallization process: time to complete solidification and so-called fed volume describing the casting feeding efficiency. The computer simulations have been carried out with use of MagmaSoft v. 5.2 software. Finally, the optimisation has led to 15% better steel yield thanks to 60% top feeders weight reduction and 40% shorter solidification time. The steel ring cast with use of such technology fulfil all quality criteria.

Go to article

Authors and Affiliations

M. Jaromin
R. Dojka
J. Jezierski
M. Dojka
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to identify relationships between the values of the fluidity obtained by computer simulation and by an experimental test in the horizontal three-channel mould designed in accordance with the Measurement Systems Analysis. Al-Si alloy was a model material. The factors affecting the fluidity varied in following ranges: Si content 5 wt.% – 12 wt.%, Fe content 0.15 wt.% – 0.3wt. %, the pouring temperature 605°C-830°C, and the pouring speed 100 g · s–1 – 400 g · s–1. The software NovaFlow&Solid was used for simulations. The statistically significant difference between the value of fluidity calculated by the equation and obtained by experiment was not found. This design simplifies the calculation of the capability of the measurement process of the fluidity with full replacement of experiments by calculation, using regression equation.

Go to article

Authors and Affiliations

P. Futáš
J. Petrík
A. Pribulová
P. Blaško
P. Palfy
Download PDF Download RIS Download Bibtex

Abstract

A novel type of an axial, piston-driven high pressure hydraulic pump with variable capacity marks a significant improvement in the area of the hydraulic machinery design. Total discharge from hydrostatic forces eliminates a need for a servomechanism, thus simplifying operation, reducing weight and introducing the possibility of the pump displacement control by computer. PWK-type pumps, invented in the Gdansk University of Technology, offer high efficiency for pressure levels up to 55 MPa, ability to work self sucking even at high speed. However, the heart of the new invention, the commutation unit, creates harmful pressure peaks. Those peaks can be mitigated by the introduction of a compensation chamber with elastic walls. Owing to the dynamic character of events taking place in the pump, a need for computer simulation arouse in order to understand phenomena leading to the occurrence of pressure peaks and choose compensation chamber parameters accordingly. A CFD package alone would not be sufficient to reliably represent the interaction between the compensation chamber wall and the working fluid. This paper presents Fluid Structure Interaction approach comparing 3 different models: 2 simplified models of the pump and a full pump model.

Go to article

Authors and Affiliations

Leszek Osiecki
Piotr Patrosz
Bettina Landvogt
Janusz Piechna
Tomasz Zawistowski
Bartek Żyliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an approach of numerical modelling of alloy solidification in permanent mold and transient heat transport between the casting and the mold in two-dimensional space. The gap of time-dependent width called "air gap", filled with heat conducting gaseous medium is included in the model. The coefficient of thermal conductivity of the gas filling the space between the casting and the mold is small enough to introduce significant thermal resistance into the heat transport process. The mathematical model of heat transport is based on the partial differential equation of heat conduction written independently for the solidifying region and the mold. Appropriate solidification model based on the latent heat of solidification is also included in the mathematical description. These equations are supplemented by appropriate initial and boundary conditions. The formation process of air gap depends on the thermal deformations of the mold and the casting. The numerical model is based on the finite element method (FEM) with independent spatial discretization of interacting regions. It results in multi-mesh problem because the considered regions are disconnected.

Go to article

Authors and Affiliations

T. Skrzypczak
L. Sowa
E. Węgrzyn-Skrzypczak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a numerical analysis of nitride-based edge-emitting lasers with an InGaN/GaN active region designed for continuous wave room temperature emission of green and blue light. The main goal was to investigate whether the indium thin oxide (ITO) layer can serve as an effective optical confinement improving operation of these devices. Simulations were performed with the aid of a self-consistent thermal-electrical-optical model. Results obtained for green- and blue-emitting lasers were compared. The ITO layer in the p-type cladding was found to effectively help confine the laser mode in the active regions of the devices and to decrease the threshold current density.

Go to article

Authors and Affiliations

M. Kuc
A.K. Sokół
Ł. Piskorski
M. Dems
M. Wasiak
R.P. Sarzała
T. Czyszanowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a multi-scale mathematical model dedicated to a comprehensive simulation of resistance heating combined with the melting and controlled cooling of steel samples. Experiments in order to verify the formulated numerical model were performed using a Gleeble 3800 thermo-mechanical simulator. The model for the macro scale was based upon the solution of Fourier-Kirchhoff equation as regards predicting the distribution of temperature fields within the volume of the sample. The macro scale solution is complemented by a functional model generating voluminal heat sources, resulting from the electric current flowing through the sample. The model for the micro-scale, concerning the grain growth simulation, is based upon the probabilistic Monte Carlo algorithm, and on the minimization of the system energy. The model takes into account the forming mushy zone, where grains degrade at the melting stage – it is a unique feature of the micro-solution. The solution domains are coupled by the interpolation of node temperatures of the finite element mesh (the macro model) onto the Monte Carlo cells (micro model). The paper is complemented with examples of resistance heating results and macro- and micro-structural tests, along with test computations concerning the estimation of the range of zones with diverse dynamics of grain growth.

Go to article

Authors and Affiliations

M. Hojny
M. Głowacki
P. Bała
W. Bednarczyk
W. Zalecki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the evaluation of utility properties of a tube bend produced by bending process using local induction heating technique. Optimal process parameters were defined on the basis of numerical simulations. Mechanical testing procedures for the tube bend were carried out after normalising annealing. Heat treatment parameters have been chosen in compliance with the relevant standard. Geometrical measurements of the bend manufactured under industrial conditions indicate high accuracy of numerical simulations. Geometry and mechanical properties of the produced bend were consistent with the requirements of the applicable standards.

Go to article

Authors and Affiliations

G. Junak
T. Kawała
M. Cieśla
Download PDF Download RIS Download Bibtex

Abstract

The paper compares the geometrical surface structure of modelled tooth flanks of cylindrical gear obtained by a three dimensional simulation of gear generation with the geometrical surface structure of real gear obtained through chiselling by Fellows method. The paper presents the methodology of modelling tooth flanks of cylindrical gears in the CAD environment. The modelling consists in computer simulation of gear generation. The computer simulation of the gear generation was performed in the Mechanical Desktop environment. Metrological measurements of the real gear were carried out using a coordinated measuring machine and a profilometer.

Go to article

Authors and Affiliations

Leszek Skoczylas
Jacek Michalski
Download PDF Download RIS Download Bibtex

Abstract

Vibration intensity in mobile machines depends on the road roughness profile, ride velocity and dissipative properties of machine components. To reduce vibrations of a mobile machine with a boom equipment one of the available passive methods, utilizing a hydropnematic system for boom support to improve flexibility, the system incorporating throttling valves. Energy dissipation in a hydropneumatic system controls the decay of vibrations of the machine body and equipment. In the range of large velocities, passive methods prove inadequate. When ride velocity is to be increased, at the same time the required safety features and stabilization of the position of machine equipment are to be provided, further dynamic analyses are fully merited to identify processes taking place in the driving system. The final result should be the synthesis of the LQR control system to modulate the loading characteristics of the motor and to control the flow in a hydraulic boom-support system.

Go to article

Authors and Affiliations

Stefan Chwastek
Stanisław Michałowski
Download PDF Download RIS Download Bibtex

Abstract

The Medical Simulation Center at the Medical University of Białystok was created as part of a broader project. Throughout Poland there are 12 such centers, and each with a somewhat different concept. The common denominator is that they help medical, nursing, and obstetrics students test their knowledge and skills in practice. The Medical Simulation Center in Białystok boasts a sizeable set of simulation facilities, including an operating room, ambulance, emergency ward, labor ward, and nurse’s station. The technicians devise scenarios for students to enable them to practice reacting to specific cases. All the facilities are equipped with state-of-the-art audio-video equipment to record lessons for later review and analysis.

Go to article

Authors and Affiliations

Jakub Ostałowski
Download PDF Download RIS Download Bibtex

Abstract

Prof. Daniel Wójcik from the Nencki Institute of Experimental Biology explains the principles of brain modelling

Go to article

Authors and Affiliations

Daniel Wójcik
Download PDF Download RIS Download Bibtex

Abstract

Simulation-based models standing in for the real world are unfettered by any biological, emotional, historical, logical, or practical limitations.

Go to article

Authors and Affiliations

Katarzyna Kasia
Download PDF Download RIS Download Bibtex

Abstract

Dr. Takao Ishikawa from the University of Warsaw talks about why perhaps not all scientists should aim to become professors, and explains what we can learn from yeast proteins.

Go to article

Authors and Affiliations

Takao Ishikawa
Download PDF Download RIS Download Bibtex

Abstract

The author presents a development of computational model of design of ball screws thread. This model is the basis for computer program, which calculates the geometrical features of the thread for precisely given backlashes and contact angles. The program makes it possible to create a data base of a new generation ball screw of quality competitive to foreign ball screws. The modeling allows one to better select the ball screw and to predict its quality in the early stage of design.
Go to article

Authors and Affiliations

Jerzy Z. Sobolewski
Download PDF Download RIS Download Bibtex

Abstract

This article presents a sequential model of the heating-remelting-cooling of steel samples based on the finite element method (FEM) and the smoothed particle hydrodynamics (SPH). The numerical implementation of the developed solution was completed as part of the original DEFFEM 3D package, being developed for over ten years, and is a dedicated tool to aid physical simulations performed with modern Gleeble thermo-mechanical simulators. Using the developed DEFFEM 3D software to aid physical simulations allows the number of costly tests to be minimized, and additional process information to be obtained, e.g. achieved local cooling rates at any point in the sample tested volume, or characteristics of temperature changes. The study was complemented by examples of simulation and experimental test results, indicating that the adopted model assumptions were correct. The developed solution is the basis for the development of DEFFEM 3D software aimed at developing a comprehensive numerical model allows the simulation of deformation of steel in semi solid state.

Go to article

Authors and Affiliations

Marcin Hojny
Download PDF Download RIS Download Bibtex

Abstract

The properties of a mechanical resonator provide a valuable ability to measure liquid density and viscosity. The viscosity of liquids is of interest to researchers in both industry and medicine. In this paper, a viscosity sensor for liquids is proposed, which is designed based on an electromechanical resonator. In the proposed sensor, a capacitor is used as an electrostatic actuator. The capacitor is also used to monitor the frequency changes of the proposed resonator. The range of displacement of the resonator and capacitor in response to different fluids under test varies according to their viscosity. The design of the proposed sensor and its electrostatic and mechanical simulations are reported in this paper. Also, the effect of viscosity of several different liquids on its performance has been analyzed and presented experimentally using a prototype.
Go to article

Authors and Affiliations

Amin Eidi
1

  1. Sahand University of Technology, Tabriz, Iran

This page uses 'cookies'. Learn more