Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The performance of a novel airfoil-based tube with dimples is numerically studied in the present work. The effect of Reynolds number Re, dimples number N, relative depth H/D, and cross-distribution angle α on flow and heat transfer characteristics are discussed for Re in the range between 7,753 and 21,736. The velocity contour, temperature contour, and local streamlines are also presented to get an insight into the heat transfer enhancement mechanisms. The results show that both the velocity magnitude and flow direction change, and fluid dynamic vortexes are generated around the dimples, which intensify the flow mixing and interrupt the boundary layer, resulting in a better heat transfer performance accompanied by a certain pressure loss compared with the plain tube. The Nusselt number Nu of the airfoil-based tube increases with the increase of dimples number, relative depth, and Reynolds numbers, but the effect of cross-distribution angle can be ignored. Under geometric parameters considered, the airfoil-based tube with N = 6, H/D = 0.1, α = 0° and Re = 7,753 can obtain the largest average PEC value 1.23. Further, the empirical formulas for Nusselt number Nu and friction factor f are fitted in terms of dimple number N, relative depth H/D, and Reynolds number Re, respectively, with the errors within ± 5%. It is found that the airfoil-based tube with dimples has a good comprehensive performance.
Go to article

Authors and Affiliations

Houju Pei
1
ORCID: ORCID
Meinan Liu
2
Kaijie Yang
3
Li Zhimao
1
Chao Liu
1

  1. Shanghai Aircraft Design and Research Institute Environment Control and Oxygen System Department, China
  2. College of Energy and Power Engineering, Jiangsu University of Science and Technology, China
  3. Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, China
Download PDF Download RIS Download Bibtex

Abstract

While cycloid pin-wheel precision reducers (referred to as RV reducers) are widely used in industrial robots, a widely accepted design standard or verification method of their test platforms is not available. In this study, a comprehensive sliding-separation test platform of RV reducers was developed. The test platform can test various measurement items such as transmission error, static measurement of lost motion, dynamic measurement of lost motion, torsional rigidity, no-load running torque, starting torque, backdriving torque, and transmission efficiency of the RV reducer for robots. The principle and method of dynamic measurement of lost motion tests based on the two-way transmission error method were studied and this test function was successfully integrated with the comprehensive test platform in order to increase the test items of the dynamic performance parameters of RV reducers. The measurement results of the no-load running torque of the RV reducer were consistent with the Stribeck curve. Based on the concept of optimal measurement speed, a decomposition test method of the geometric component of the dynamic measurement of lost motion and the elastic component of the dynamic measurement of lost motion was proposed in the dynamic measurement test of lost motion. Through precision calibration, function test and repeatability test, the results were compared with the data of enterprise’s samples. The consistent results have proved that the test platform met engineering requirements and measurement accuracy requirements. Based on the new test principle, the developed platform can test more parameters of RV reducers with high precision and display the comprehensive test performance.
Go to article

Authors and Affiliations

Huijun Yue
1
Xiangkai Wu
1
Zhaoyao Shi
1
Yue Zhang
1
Yong Ye
1
Lintao Zhang
1
Ying Fu
1

  1. Beijing University of Technology, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100, Ping Le Yuan, Chaoyang District, Beijing 100124, China

This page uses 'cookies'. Learn more