Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Winglets are introduced into modern aircraft to reduce wing aerodynamic drag and to consequently optimize the fuel burn per mission. In order to be aerodynamically effective, these devices are installed at the wing tip section; this wing region is generally characterized by relevant oscillations induced by flights maneuvers and gust. The present work is focused on the validation of a continuous monitoring system based on fiber Bragg grating sensors and frequency domain analysis to detect physical condition of a skin-spar bonding failure in a composite winglet for in-service purposes. Optical fibers are used as deformation sensors. Short Time Fast Fourier Transform (STFT) analysis is applied to analyze the occurrence of structural response deviations on the base of strain data. Obtained results showed high accuracy in estimating static and dynamic deformations and great potentials in detecting structural failure occurrences.

Go to article

Bibliography

[1] K. Diamanti and C. Soutis. Structural health monitoring techniques for aircraft composite structures. Progress in Aerospace Sciences, 46(8):342–352, 2010. doi: 10.1016/j.paerosci.2010.05.001.
[2] C. Bockenheimer and H. Speckmann. Validation, verification and implementation of SHM at Airbus. In Proceedings of the 9th International Workshop on Structural Health Monitoring (IWSHM 2013), Stanford University, Stanford, CA, USA, pages 10–12, 2013.
[3] H. Speckmann and H. Roesner. Structual Health Monitoring: A contribution to the intelligent aircraft structure. In Proceedings of ECNDT 2006, 9th European Conference on NDT, Berlin, Germany, Sept. 2006.
[4] O. Shapira, S. Kedem, B. Glam, N.Y. Shemesh, A. Dvorjetski, N. Mashiach, J. Balter, R. Shklovsky, I. Sovran, N. Gorbatov, et al. Implementation of a fiber-optic sensing technology for global structural integrity monitoring of UAVs. In The 54th Israel Annual Conference on Aerospace Sciences, Tel-Aviv, Israel, 2014.
[5] R. De Oliveira, O. Frazão, J.L. Santos, and A.T. Marques. Optic fibre sensor for real-time damage detection in smart composite. Computers & Structures, 82(17):1315–1321, 2004. doi: 10.1016/j.compstruc.2004.03.028.
[6] E. Di Lorenzo, G. Petrone, S. Manzato, B. Peeters,W. Desmet, and F. Marulo. Damage detection in wind turbine blades by using operational modal analysis. Structural Health Monitoring, 15(3):289–301, 2016. doi: 10.1177/1475921716642748.
[7] I. Dimino and A. Calabrò. Structural damage identification by vibration parametres and fibre optic sensors. Czech Aerospace, 2009(3):33–41, 2009.
[8] S. Bhalla and C.K. Soh. Structural health monitoring by piezo-impedance transducers. I: Modeling. Journal of Aerospace Engineering, 17(4):154–165, 2004. doi: 10.1061/(ASCE)0893-1321(2004)17:4(154).
[9] S. Bhalla and C.K. Soh. Electromechanical impedance modeling for adhesively bonded piezotransducers. Journal of Intelligent Material Systems and Structures, 15(12):955–972, 2004. doi: 10.1177/1045389X04046309.
[10] A. De Fenza, A. Sorrentino, and P. Vitiello. Application of Artificial Neural Networks and Probability Ellipse methods for damage detection using Lamb waves. Composite Structures, 133:390–403, 2015. doi: 10.1016/j.compstruct.2015.07.089.
[11] R. Di Sante. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors, 15(8):18666–18713, 2015. doi: 10.3390/s150818666.
[12] H. Takeya, T. Ozaki, and N. Takeda. Structural health monitoring of advanced grid structure using multi-point FBG sensors. Proc. SPIE, 5762:204–211, 2005. doi: 10.1117/12.598759.
[13] H. Murayama, K. Kageyama, H. Naruse, A. Shimada, and K. Uzawa. Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures. Journal of Intelligent Material Systems and Structures, 14(1):3–13, 2003. doi: 10.1177/1045389X03014001001.
[14] G. Fabbi, M. Ciminello, A. Mataloni, P. Perugini, A. Sorrentino, and A. Concilio. Filament wound solid rocket motor vessels strain measurement and potential Structural Health Monitoring through fiber optics. In The space Propulsion 201 Conference, Rome, Italy, 2-6 May 2016. Paper No. SP2016-3125185.
[15] M. Ciminello, I. Dimino, S. Ameduri, and A. Concilio. Fiber optic shape sensor for morphing wing trailing edge. In Proceedings of 26th International Conference on Adaptive Structures and Technologies (ICAST2015), pages 312–318, 14-16 Oct. 2015.
[16] J.R. Lee, C.Y. Ryu, B.Y. Koo, S.G. Kang, C.S. Hong, and C.G. Kim. In-flight health monitoring of a subscale wing using a fiber bragg grating sensor system. Smart Materials and Structures, 12(1):147, 2003. doi: 10.1088/0964-1726/12/1/317.
[17] A. De Fenza, G. Petrone, R. Pecora, and M. Barile. Post-impact damage detection on a winglet structure realized in composite material. Composite Structures, 169:129–137, 2017. doi: 10.1016/j.compstruct.2016.10.004.
[18] MD Nastran. Quick Reference Guide, 2011.
[19] K.O. Hill and G. Meltz. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8):1263–1276, 1997. doi: 10.1109/50.618320.
Go to article

Authors and Affiliations

Monica Ciminello
1
Angelo De Fenza
2 3
Ignazio Dimino
1
Rosario Pecora
2

  1. Italian Aerospace Research Center, Capua, Italy
  2. Department of Industrial Engineering – Aerospace Division, University of Naples “Federico II”, Naples, Italy
  3. NOVOTECH s.r.l. – Aerospace Advanced Technology, Naples, Italy
Download PDF Download RIS Download Bibtex

Abstract

This study, describing computer simulation of a glider crash against a non-deformable ground barrier, is a part of a larger glider crash modeling project. The studies were intended to develop a numerical model of the pilot - glider - environment system, whereby the dynamics of the human body and the composite cockpit structure during a crash would make it possible to analyze flight accidents with focus on the pilot's safety. Notwithstanding that accidents involving glider crash against a rigid barrier (a wall, for example) are not common, establishing a simulation model for such event may prove quite useful considering subsequent research projects. First, it is much easier to observe the process of composite cockpit structure destruction if the crash is against a rigid barrier. Furthermore, the use of a non-deformable barrier allows one to avoid the errors that are associated with the modeling of a deformable substrate, which in most cases is quite problematic. Crash test simulation, carried out using a MAYMO package, involved a glider crash against a wall positioned perpendicularly to the object moving at a speed of 77 km/h. Computations allowed for determination of time intervals of the signals that are required to assess the behavior of the cockpit and pilot's body - accelerations and displacements in selected points of the glider's structure and loads applied to the pilot's body: head and chest accelerations, forces at femur, lumbar spine and safety belts. Computational results were compared with the results of a previous experimental test that had been designed to verify the numerical model. The glider's cockpit was completely destroyed in the crash and the loads transferred to the pilot's body were very substantial - way over the permitted levels. Since modeling results are fairly consistent with the experimental test, the numerical model can be used for simulation of plane crashes in the future.

Go to article

Authors and Affiliations

Lukasz Lindstedt
Download PDF Download RIS Download Bibtex

Abstract

The paper studies the mechanical properties of glass fibre reinforced polymers (GFRP) with various types and orientation of reinforcement. Analyzed specimens manufactured in the infusion process are made of polymer vinyl ester resin reinforced with glass fibres. Several samples were examined containing different plies and various fibres orientation [0, 90] or [+45, –45]. To assess the mechanical parameters of laminates, a series of experimental tests were carried out. The samples were subjected to the uniaxial tensile tests, which allowed us to obtain substitute parameters, such as modulus of elasticity or strength. After all, results from experiments were used to validate the numerical model. A computational model was developed employing ABAQUS software using the Finite Element Method (FEM). The analysis was performed to verify and compare the results obtained from numerical calculations with the experiments. Additionally, the following failure criteria were studied, based on the index of failure IF Maximum Stress, Maximum Strain, Tsai–Hill, and Tsai–Wu. The results confirmed the assumptions made for the footbridge's design purpose, which is made using examined material. Moreover, comparing the experimental and numerical results found that in the linear-elastic range of the material, they are consistent, and there is no significant difference in results.
Go to article

Bibliography


[1] H. Altenbach, J. Altenbach, and W. Kissing, Mechanics of Composite Structural Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
[2] E. Barbero, J. Fernández-Sáez, and C. Navarro, “Statistical analysis of the mechanical properties of composite materials,” Composites Part B: Engineering, vol. 31, no. 5, pp. 375–381, Jul. 2000. https://doi.org/10.1016/S1359-8368(00)00027-5
[3] J. Chróścielewski, T. Ferenc, T. Mikulski, M. Miśkiewicz, and Ł. Pyrzowski, “Numerical modeling and experimental validation of full-scale segment to support design of novel GFRP footbridge,” Composite Structures, vol. 213, pp. 299–307, Apr. 2019. https://doi.org/10.1016/j.compstruct.2019.01.089
[4] P. Colombi and C. Poggi, “An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips,” Composites Part B: Engineering, vol. 37, no. 1, pp. 64–73, Jan. 2006. https://doi.org/.1016/j.compositesb.2005.03.002
[5] S. C. M. D’Aguiar and E. Parente Junior, “Local buckling and post-critical behavior of thin-walled composite channel section columns,” Latin American Journal of Solids and Structures, vol. 15, no. 7, Jul. 2018. https://doi.org/10.1590/1679-78254884
[6] I. Danilov, “Some Aspects of CFRP Steel Structures Reinforcement in Civil Engineering,” Procedia Engineering, vol. 153, pp. 124–130, 2016. https://doi.org/10.1016/j.proeng.2016.08.091
[7] J. Di, L. Cao, and J. Han, “Experimental Study on the Shear Behavior of GFRP–Concrete Composite Beam Connections,” Materials, vol. 13, no. 5, p. 1067, Feb. 2020. https://doi.org/10.3390/ma13051067
[8] H. M. Elsanadedy, Y. A. Al-Salloum, S. H. Alsayed, and R. A. Iqbal, “Experimental and numerical investigation of size effects in FRP-wrapped concrete columns,” Construction and Building Materials, vol. 29, pp. 56–72, Apr. 2012. https://doi.org/10.1016/j.conbuildmat.2011.10.025
[9] T. Ferenc, Ł. Pyrzowski, J. Chróścielewski, and T. Mikulski, “Sensitivity analysis in design process of sandwich U-shaped composite footbridge,” in Shell Structures: Theory and Applications Volume 4, CRC Press, pp. 413–416, 2017. https://doi.org/10.1201/9781315166605-94
[10] R. Haj-Ali and H. Kilic, “Non-linear behavior of pultruded FRP composites,” Composites Part B: Engineering, vol. 33, no. 3, pp. 173–191, Apr. 2002. https://doi.org/10.1016/S1359-8368(02)00011-2
[11] M. Heshmati, R. Haghani, and M. Al-Emrani, “Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: State of the art,” Composites Part B: Engineering, vol. 81, pp. 259–275, Nov. 2015. https://doi.org/10.1016/j.compositesb.2015.07.014
[12] K. Kaw, Mechanics of Composite Materials. CRC Press, 2005.
[13] M. Klasztorny, D. B. Nycz, R. K. Romanowski, P. Gotowicki, A. Kiczko, and D. Rudnik, “Effects of Operating Temperatures and Accelerated Environmental Ageing on the Mechanical Properties of a Glass-Vinylester Composite,” Mechanics of Composite Materials, vol. 53, no. 3, pp. 335–350, Jul. 2017. https://doi.org/10.1007/s11029-017-9665-9
[14] I. Kreja, “A literature review on computational models for laminated composite and sandwich panels,” Open Engineering, vol. 1, no. 1, Jan. 2011. https://doi.org/10.2478/s13531-011-0005-x
[15] S. Moy, “Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications,” in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Elsevier, pp. 177–204, 2013. https://doi.org/10.1533/9780857098955.2.177
[16] J. N. Reddy, “Theory and Analysis of Laminated Composite Plates,” in Mechanics of Composite Materials and Structures, Dordrecht: Springer Netherlands, pp. 1–79, 1999.
[17] J. N. Reddy, “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of Applied Mechanics, vol. 51, no. 4, pp. 745–752, Dec. 1984. https://doi.org/10.1115/1.3167719
[18] M. Rostami, K. Sennah, and S. Hedjazi, “GFRP Bars Anchorage Resistance in a GFRP-Reinforced Concrete Bridge Barrier,” Materials, vol. 12, no. 15, p. 2485, Aug. 2019. https://doi.org/10.3390/ma12152485
[19] A. Sabik and I. Kreja, “Linear analysis of laminated multilayered plates with the application of zig-zag function,” Archives of Civil and Mechanical Engineering, vol. 8, no. 4, pp. 61–72, Jan. 2008. https://doi.org/10.1016/S1644-9665(12)60122-8
[20] P. P. Sankholkar, C. P. Pantelides, and T. A. Hales, “Confinement Model for Concrete Columns Reinforced with GFRP Spirals,” Journal of Composites for Construction, vol. 22, no. 3, p. 04018007, Jun. 2018. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000843
[21] Wen and S. Yazdani, “Anisotropic damage model for woven fabric composites during tension–tension fatigue,” Composite Structures, vol. 82, no. 1, pp. 127–131, Jan. 2008. https://doi.org/10.1016/j.compstruct.2007.01.003
[22] H. Xin, Y. Liu, A. S. Mosallam, J. He, and A. Du, “Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates,” Composite Structures, vol. 182, pp. 283–300, Dec. 2017. https://doi.org/10.1016/j.compstruct.2017.09.006
[23] H. Xin, A. Mosallam, Y. Liu, C. Wang, and Y. Zhang, “Analytical and experimental evaluation of flexural behavior of FRP pultruded composite profiles for bridge deck structural design,” Construction and Building Materials, vol. 150, pp. 123–149, Sep. 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.212
[24] J. E. Yetman, A. J. Sobey, J. I. R. Blake, and R. A. Shenoi, “Mechanical and fracture properties of glass vinylester interfaces,” Composites Part B: Engineering, vol. 130, pp. 38–45, Dec. 2017. https://doi.org/10.1016/j.compositesb.2017.07.011
[25] S. Zhang, C. Caprani, and A. Heidarpour, “Influence of fibre orientation on pultruded GFRP material properties,” Composite Structures, vol. 204, pp. 368–377, Nov. 2018. https://doi.org/10.1016/j.compstruct.2018.07.104
[26] Determination of tensile properties of plastics. Part 1: General principles, Geneva, Switzerland, 1993.
Go to article

Authors and Affiliations

Tomasz Wiczenbach
1
ORCID: ORCID
Tomasz Ferenc
1
ORCID: ORCID

  1. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12, 80-233 Gdańsk
Download PDF Download RIS Download Bibtex

Abstract

In this paper, existing knowledge on the behaviour of soil-steel composite structures (SSCSs) has been reviewed. In particular, the response of buried corrugated steel plates (CSPs) to static, semistatic, and dynamic loads has been covered. Furthermore, the performance of SSCS under extreme loading, i.e., loading until failure, has been studied. To investigate the behaviour of the type of composite structures considered, numerous full-scale tests and numerical simulations have been conducted for both arched and box shapes of the shell. In addition, researchers have examined different span lengths and cover depths. Furthermore, to enhance the load-bearing capacity of the composite structures, various stiffening elements have been applied and tested. The reviewshows that the mechanical features of SSCSs are mainly based on the interaction of the shell with the soil backfill. The structures, as a composite system, become appropriately stiff when completely backfilled. For this reason, the construction phase corresponds to the highest values of shell displacement and stress. Moreover, the method of laying and compacting the backfill, as well as the thickness of the cover, has a significant impact on the behaviour of the structure at the stage of operation in both the quantitative and qualitative sense. Finally, a limited number of studies are conducted on the ultimate bearing capacity of large-span SSCS and various reinforcing methods. Considerably more works will need to be done on this topic. It applies to both full scale tests and numerical analysis.
Go to article

Authors and Affiliations

Alemu Mosisa Legese
1
ORCID: ORCID
Maciej Sobótka
1
ORCID: ORCID
Czesław Machelski
1
ORCID: ORCID
Adrian Różański
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The non-linear analysis of hollow-core concrete slabs requires the use of advanced numerical techniques, proper constitutive models both for concrete and steel as well as particular computational skills. If prestressing, cracking, crack opening, material softening, etc. are also to be taken into account, then the computational task can far exceed the capabilities of an ordinary engineer. In order for the calculations to be carried out in a traditional design office, simplified calculation methods are needed. They should be based on the linear finite element (FE) method with a simple approach that takes into account material nonlinearities. In this paper the simplified analysis of hollow-core slabs based on the generalized nonlinear constitutive law is presented. In the proposed method a simple decomposition of the traditional iterative linear finite element analysis and the non-linear algebraic analysis of the plate cross-section is used. Through independent analysis of the plate cross-section in different deformation states, a degraded plate stiffness can be obtained, which allows for iterative update of displacements and rotations in the nodes of the FE model. Which in turn allows to update the deformation state and then correct translations and rotations in the nodes again. The results obtained from the full detailed 3D nonlinear FEM model and from the proposed approach are compared for different slab cross-sections. The obtained results from both models are consistent.
Go to article

Authors and Affiliations

Natalia Staszak
1
ORCID: ORCID
Tomasz Garbowski
1
ORCID: ORCID
Barbara Ksit
2
ORCID: ORCID

  1. Poznan University of Life Sciences, Department of Biosystems Engineering, Wojska Polskiego 50, 60-627 Poznań
  2. Poznan University of Technology, Institute of Building Engineering, Piotrowo 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a modified finite element method for nonlinear analysis of 2D beam structures. To take into account the influence of the shear flexibility, a Timoshenko beam element was adopted. The algorithm proposed enables using complex material laws without the need of implementing advanced constitutive models in finite element routines. The method is easy to implement in commonly available CAE software for linear analysis of beam structures. It allows to extend the functionality of these programs with material nonlinearities. By using the structure deformations, computed from the nodal displacements, and the presented here generalized nonlinear constitutive law, it is possible to iteratively reduce the bending, tensile and shear stiffnesses of the structures. By applying a beam model with a multi layered cross-section and generalized stresses and strains to obtain a representative constitutive law, it is easy to model not only the complex multi-material cross-sections, but also the advanced nonlinear constitutive laws (e.g. material softening in tension). The proposed method was implemented in the MATLAB environment, its performance was shown on the several numerical examples. The cross-sections such us a steel I-beam and a steel I-beam with a concrete encasement for different slenderness ratios were considered here. To verify the accuracy of the computations, all results are compared with the ones received from a commercial CAE software. The comparison reveals a good correlation between the reference model and the method proposed.
Go to article

Bibliography


[1] Abaqus Documentation Collection, Abaqus Analysis User's Manual, Abaqus/CAE User's Manual, 2020.
[2] A. M. Barszcz, “Direct design and assessment of the limit states of steel planar frames using CSD advanced analysis”, Archives of Civil Engineering, 64(4), pp. 203–241, 2018. https://doi.org/10.2478/ace-2018-0071
[3] S. El-Tawil, C. F. Sanz-Picon, G. G. Deierlein, „Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns”, Journal of Constructional Steel Research, 34(1): pp 103–123, 1995.
[4] K. A. Farhan, M. A. Shallal, „Experimental behaviour of concrete-filled steel tube composite beams”, Archives of Civil Engineering, 66(2), pp. 235–252, 2020. https://doi.org/10.24425/ace.2020.131807
[5] T. Gajewski, T. Garbowski, „Calibration of concrete parameters based on digital image correlation and inverse analysis”, Archives of Civil and Mechanical Engineering, 14, pp. 170–180, 2014. https://doi.org/10.1016/J.ACME.2013.05.012
[6] T. Gajewski, T. Garbowski, „Mixed experimental/numerical methods applied for concrete parameters estimation”, Recent Advances in Computational Mechanics: proceedings of the 20th International Conference on Computer Methods in Mechanics (CMM 2013), Poznan, August, 2013, Editors: T. Łodygowski, J. Rakowski, P. Litewka, CRC Press/Balkema, pp. 293–302, 2014. https://doi.org/10.1201/B16513
[7] T. Garbowski, G. Maier, G. Novati, “Diagnosis of concrete dams by flat-jack tests and inverse analyses based on proper orthogonal decomposition”, Journal of Mechanics of Materials and Structures, 6 (1–4), pp. 181–202, 2011. https://doi.org/10.2140/JOMMS.2011.6.181
[8] B. Grzeszykowski, E. Szmigiera, „Nonlinear longitudinal shear distribution in steel-concrete composite beams”, Archives of Civil Engineering, 65(1), pp. 65–82, 2019. https://doi.org/10.2478/ace-2019-0005
[9] T. Jankowiak, T. Łodygowski, „Identification of parameters of concrete damage plasticity constitutive model”, Foundations of Civil and Environmental Engineering, No. 6, pp. 53–69, 2005.
[10] V. Jayanthi, C. Umarani, „Performance evaluation of different types of shear connectors in steel-concrete composite construction”, Archives of Civil Engineering, 64(2), pp. 97–110, 2018. https://doi.org/10.2478/ace-2018-0019
[11] T. Łodygowski, „Geometrycznie nieliniowa analiza sztywno-plastycznych i sprężysto-plastycznych belek i ram płaskich”, Warsaw, 1982.
[12] T. Łodygowski, M. Szumigała, „Engineering models for numerical analysis of composite bending members”, Mechanics of Structures and Machines, 20, pp. 363–380, 1992.
[13] S. A. Mahin, V. V. Bertero, RCCOLA, „a Computer Program for Reinforced Concrete Column Analysis: User's Manual and Documentation”, Department of Civil Engineering, University of California, 1977.
[14] S. A. Mirza, B. W. Skrabek, „Reliability of short composite beam-column strength interaction”, Journal of Structural Engineering, 117(8): pp 2320–2339, 1991.
[15] PN-EN 1992-1-1:2008 - Eurocode 2: Design of concrete structures - Part 1-1: General rules, and rules for buildings, 2008.
[16] G. Rakowski, Z. Kasprzyk, „Metoda Elementów Skończonych w mechanice konstrukcji”, OWPW, Poland, 2016.
[17] C. N. Reid, „Deformation geometry for materials scientists”, Pergamon, 1973.
[18] J. Rotter, P. Ansourian, „Cross-section behaviour and ductility in composite beams”, 1978.
[19] J. Siwiński, A. Stolarski, „Homogeneous substitute material model for reinforced concrete modeling”, Archives of Civil Engineering, 64(1), pp. 87–99, 2018. https://doi.org/10.2478/ace-2018-0006
[20] P. Szeptyński, „Teoria sprężystości”, Cracow, 2018.
[21] M. Szumigała, „Zespolone stalowo-betonowe konstrukcje szkieletowe pod obciążeniem doraźnym”, Wydawnictwo Politechniki Poznańskiej, Poland, 2007.
[22] A. Zirpoli, G. Maier, G. Novati, T. Garbowski, „Dilatometric tests combined with computer simulations and parameter identification for in-depth diagnostic analysis of concrete dams”, Life-Cycle Civil Engineering: proceedings of the 1st International Symposium on Life-Cycle Civil Engineering (IALCCE '08), Varenna, Lake Como, June, 2008, Editors: F. Biondini, D. M. Frangopol, CRC Press, 1, pp. 259–264, 2008. https://doi.org/10.1201/9780203885307
Go to article

Authors and Affiliations

Damian Mrówczyński
1
ORCID: ORCID
Tomasz Gajewski
2
ORCID: ORCID
Tomasz Garbowski
3
ORCID: ORCID

  1. Research and Development Division, FEMAT Sp. z o.o., Romana Maya 1, 61-371, Poznan, Poland
  2. Poznan University of Technology, Institute of Structural Analysis, Piotrowo 5, 60-965 Poznan, Poland
  3. Poznan University of Life Sciences, Department of Biosystems Engineering, Wojska Polskiego 50, 60-627 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of laminated veneer lumber panels subjected to bending. Laminated veneer lumber (LVL) is a sustainable building material manufactured by laminating 3-4-mm-thick wood veneers, using adhesives. The authors of this article studied the behaviour of type R laminated veneer lumber (LVL R), in which all veneers are glued together longitudinally – along the grain. Tensile, compressive and bending tests of LVL R were conducted. The short-term behaviour, load carrying-capacity, mode of failure and load-deflection of the LVL R panels were investigated. The authors observed failure modes at the collapse load, associated with the delamination and cracking of veneer layers in the tensile zone. What is more, two non-linear finite element models of the tested LVL R panel were developed and verified against the experimental results. In the 3D finite element model, LVL R was described as an elastic-perfectly plastic material. In the 2D finite element model, on the other hand, it was described as an orthotropic material and its failure was captured using the Hashin damage model. The comparison of the numerical and experimental analyses demonstrated that the adopted numerical models yielded the results similar to the experimental results.
Go to article

Bibliography

[1] A. M. Harte, “Timber engineering: an introduction”, in ICE Manual of Construction Materials: Volume I/II: Fundamentals and theory; Concrete; Asphalts in road construction; Masonry, M. Forde, Ed., ICE Publishing, Chapter 60, 2009.
[2] A. Karolak, J. Jasieńko and R. Raszczuk, “Historical scarf and splice carpentry joints: state of the art”, Heritage Science, vol. 8, article number 105, 2020. https://doi.org/10.1186/s40494-020-00448-2
[3] P. Witomski, A. Krajewski and P. Kozakiewicz, “Selected mechanical properties of Scots pine wood from antique churches of Central Poland”, European Journal of Wood and Wood Products, vol. 72, pp. 293–296, 2014. https://doi.org/10.1007/s00107-014-0783-y
[4] E. Kotwica and S. Krzosek, “Timber bridges – revive of old and new bridges built in Switzerland”, Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, vol. 92, pp. 207-210, 2015.
[5] B. Franke, S. Franke, A. Müller, M. Vogel, F. Scharmacher and T. Tannert, “Long term monitoring of timber bridges – Assessment and results”, Advanced Materials Research, vol. 778, pp. 749–756, 2013. https://doi.org/10.4028/www.scientific.net/AMR.778.749
[6] T. Alapieti, R. Mikkola, P. Pasanen and H. Salonen, “The influence of wooden interior materials on indoor environment: a review”, European Journal of Wood and Wood Products, vol. 78, pp. 617–634, 2020. https://doi.org/10.1007/s00107-020-01532-x
[7] A. Bragov, L. Igumnov, F. dell’Isola, A. Konstantinov, A. Lomunov and T. Iuzhina, “Dynamic testing of lime-tree (Tilia Europoea) and pine (Pinaceae) for wood model identification”, Materials, vol. 13, no. 22, article 5261, 2020. https://doi.org/10.3390/ma13225261
[8] P. G. Kossakowski, “Influence of anisotropy on the energy release rate GI for highly orthotropic materials”, Journal of Theoretical and Applied Mechanics, vol. 45, no. 4, pp. 739–752, 2007.
[9] P. G. Kossakowski, “Fracture toughness of pine wood for I and II loading modes”, Archives of Civil Engineering, vol. 54, no. 3, pp. 509–529, 2008.
[10] P. G. Kossakowski, “Mixed mode I/II fracture toughness of pine wood”, Archives of Civil Engineering, vol. 55, no. 2, pp. 199–227, 2009.
[11] M. Szumigała, E. Szumigała and Ł. Polus, “Laboratory tests of new connectors for timber-concrete composite structures”, Engineering Transactions, vol. 66, no. 2, pp. 161–173, 2018.
[12] M. Fragiacomo and E. Łukaszewska, “Time-dependent behaviour of timber-concrete composite floors with prefabricated concrete slabs”, Engineering Structures, vol. 52, pp. 687–696, 2013. https://doi.org/10.1016/j.engstruct.2013.03.031
[13] A. Dias, J. Skinner, K. Crews and T. Tannert, “Timber-concrete-composites increasing the use of timber in construction”, European Journal of Wood and Wood Products, vol. 74, no. 3, pp. 443–451. 2016. https://doi.org/10.1007/s00107-015-0975-0
[14] N. Khorsandnia, H. R. Valipour and K. Crews, “Experimental and analytical investigation of short-term behavior of LVL-concrete composite connections and beams”, Construction and Building Materials, vol. 37, pp. 229–238, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.022
[15] P. Kyvelou, L. Gardner and D. A. Nethercot, “Testing and analysis of composite cold-formed steel - wood-based flooring systems”, Journal of Structural Engineering, vol. 143, no. 11, 2017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001885
[16] A. Hassanieh, H. R. Valipour and M. A. Bradford, “Experimental and numerical study of steel-timber composite (STC) beams”, Journal of Constructional Steel Research, vol. 122, pp. 367–378, 2016. https://doi.org/10.1016/j.jcsr.2016.04.005
[17] M. Chybiński and Ł. Polus, “Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections”, Construction and Building Materials, vol. 226, pp. 317–330. 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.101
[18] S. M. Saleh and N. A. Jasim, “Structural behavior of timber aluminum composite beams under static loads”, International Journal of Research in Engineering and Technology, vol. 3, no. 10, pp. 1166–1173, 2014.
[19] M. Szumigała, M. Chybiński and Ł. Polus, “Preliminary analysis of the aluminium-timber composite beams”, Civil and Environmental Engineering Reports, vol. 27, no. 4, pp. 131–141, 2017. https://doi.org/10.1515/ceer-2017-0056
[20] C. Bedon and M. Fragiacomo, “Numerical analysis of timber-to-timber joints and composite beams with inclined self-tapping screws”, Composite Structures, vol. 207, pp. 13–28, 2019. https://doi.org/10.1016/j.compstruct.2018.09.008
[21] G. Schiro, I. Giongo, W. Sebastian, D. Riccadonna and M. Piazza, “Testing of timber-to-timber screw-connections in hybrid configurations”, Construction and Building Materials, vol. 171, pp. 170–186, 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.078
[22] K. Furtak and K. Rodacki, “Experimental investigations of load-bearing capacity of composite timber-glass I-beams”, Archives of Civil and Mechanical Engineering, vol. 18, no. 3, pp. 956–964, 2018. https://doi.org/10.1016/j.acme.2018.02.002
[23] M. Kozłowski, M. Kadela and J. Hulimka, “Numerical investigation of structural behavior of timber-glass composite beams”, Procedia Engineering, vol. 161, pp. 78–89, 2016. https://doi.org/10.1016/j.proeng.2016.08.838
[24] P. Rapp, “Application of adhesive joints in reinforcement and reconstruction of weakened wooden elements loaded axially”, Drewno, vol. 59, no. 196, pp. 59–73, 2016. https://doi.org/10.12841/wood.1644-3985.128.05
[25] P. Rapp, “The numerical modeling of adhesive joints in reinforcement of wooden elements, subjected to bending and shearing”, Drewno, vol. 60, no. 199, pp. 21–36, 2017. https://doi.org/10.12841/wood.1644-3985.192.02
[26] I. Burawska, M. Zbieć, A. Tomusiak and P. Beer, “Local reinforcement of timber with composite and lignocellulosic materials”, BioResources, vol. 10, 457–468, 2015.
[27] M. Dudziak, I. Malujda, K. Talaśka, T. Łodygowski and W. Sumelka, “Analysis of the process of wood plasticization by hot rolling”, Journal of Theoretical and Applied Mechanics, vol. 54, no. 2, pp. 503–516. 2016. https://doi.org/10.15632/jtam-pl.54.2.503
[28] M. Wieruszewski, G. Gołuński, G. J. Hruzik and V. Gotych, “Glued elements for construction”, Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology, vol. 72, pp. 453–458, 2010.
[29] J. Porteous and A. Kermani, “Structural Timber Design to Eurocode 5”, 2nd ed., Chichester: Wiley-Blackwell, 2013.
[30] P. Dietsch and T. Tannert, “Assessing the integrity of glued-laminated timber elements”, Construction and Building Materials, vol. 101, no. 2, pp. 1259–1270, 2015. https://doi.org/10.1016/j.conbuildmat.2015.06.064
[31] R. Mirski, D. Dziurka, M. Chuda-Kowalska, M. Wieruszewski, J. Kawalerczyk and A. Trociński, “The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test”, Materials, vol. 13, article 3957, 2020. https://doi.org/10.3390/ma13183957
[32] R. Mirski, D. Dziurka, M. Chuda-Kowalska, J. Kawalerczyk, M. Kuliński and K. Łabęda, “The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part II: Strength properties of glued laminated timber”, Materials, vol. 13, article 4029, 2020. https://doi.org/10.3390/ma13184029
[33] R. Brandner, A. Ringhofer and T. Reichinger, “Performance of axially-loaded self-tapping screws in hardwood: Properties and design”, Engineering Structures, vol. 188, pp. 677–699, 2019. https://doi.org/10.1016/j.engstruct.2019.03.018
[34] T. Gečys, G. Šaučiuvėnas, L. Ustinovichius, C. Miedzialowski and P. Sulik, “Surface based cohesive behavior implementation for the strength analysis of glued-in threaded rods in glulam”, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 68, no. 5, pp. 1149–1157, 2020. https://doi.org/10.24425/bpasts.2020.134665
[35] R. Brandner, “Production and technology of cross laminated timber (CLT): State-of-the-art report”, in European Conference on Cross Laminated Timber, R. Harris, A. Ringhofer and G. Schickhofer, Eds., Graz: Graz University of Technology, 2013, pp. 3–36.
[36] M. Jeleč, D. Varevac and V. Rajčić, “Cross-laminated timber (CLT) – a state of the art report”, Građevinar, vol. 70, no. 2, pp. 75–95, 2018. https://doi.org/10.14256/JCE.2071.2017
[37] O. Espinoza, V. R. Trujillo, M. F. Laguarda and U. Buehlmann, “Cross-laminated timber: Status and research needs in Europe”, BioResources, vol. 11, pp. 281–295, 2016.
[38] A. Ringhofer, R. Brandner and H. J. Blaß, “Cross laminated timber (CLT): Design approaches for dowel-type fasteners and connections”, Engineering Structures, vol. 171, pp. 849–861, 2018. https://doi.org/10.1016/j.engstruct.2018.05.032
[39] R. Brandner, A. Ringhofer and M. Grabner, “Probabilistic models for the withdrawal behavior of single self-tapping screws in the narrow face of cross laminated timber (CLT)”, European Journal of Wood and Wood Products, vol. 76, no. 1, pp. 13–30, 2018. https://doi.org/10.1007/s00107-017-1226-3
[40] T. Tannert, M. Follesa, M. Fragiacomo, P. González, H. Isoda, D. Moroder, H. Xiong and J. van de Lindt, “Seismic Design of Cross-laminated Timber Buildings”, Wood and Fiber Science, vol. 50, pp. 3–26, 2018.
[41] Z. Chena, Q. Lei, R. He, Z. Zhang, A. Jalal Khan Chowdhury, “Review on antibacterial biocomposites of structural laminated veneer lumber”, Saudi Journal of Biological Sciences, vol. 23, no. 1, pp. 142–147, 2016. https://doi.org/10.1016/j.sjbs.2015.09.025
[42] A. Özçifçi, “Effect of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL)”, Building and Environment, vol. 42, pp. 1510–1514, 2007. https://doi.org/10.1016/j.buildenv.2005.12.024
[43] H. Ido, H. Nagao, H. Kato, A. Miyatake and Y. Hiramatsu, “Strength properties of laminated veneer lumber in compression perpendicular to its grain”, Journal of Wood Science, vol. 56, pp. 422–428, 2010. https://doi.org/10.1007/s10086-010-1116-3
[44] C. Pirvu, H. Yoshida and K. Taki, “Development of LVL frame structures using glued metal plate joints I: bond quality and joint performance of LVL-metal joints using epoxy resins”, Journal of Wood Science, vol. 45, pp. 284–290, 1999. https://doi.org/10.1007/BF00833492
[45] C. Pirvu, H. Yoshida, M. Inayama, M. Yasumura and K. Taki, “Development of LVL frame structures using glued metal plate joints II: strength properties and failure behavior under lateral loading”, Journal of Wood Science, vol. 46, pp. 193–201, 2000. https://doi.org/10.1007/BF00776449
[46] A. Özçifçi, “The effects of pilot hole, screw types and layer thickness on the withdrawal strength of screws in laminated veneer lumber”, Materials and Design, vol. 30, pp. 2355–2358, 2009. https://doi.org/10.1016/j.matdes.2008.11.001
[47] G. Celebi and M. Kilic, “Nail and screw withdrawal strength of laminated veneer lumber made up hardwood and softwood layers”, Construction and Building Materials, 21, pp. 894–900, 2007. https://doi.org/10.1016/j.conbuildmat.2005.12.015
[48] M. Dorn, K. Habrová, R. Koubek and E. Serrano, “Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads”, Friction, 2020. https://doi.org/10.1007/s40544-020-0377-0
[49] C. Y. C. Purba, G. Pot, J. Viguier, J. Ruelle and L. Denaud, “The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood”, European Journal of Wood and Wood Products, vol. 77, pp. 393–404, 2019. https://doi.org/10.1007/s00107-019-01400-3
[50] P. Berard, P. Yang, H. Yamauchi, K. Umemura and S. Kawai, “Modeling of a cylindrical laminated veneer lumber I: mechanical properties of hinoki (Chamaecyparis obtusa) and the reliability of a nonlinear finite elements model of a four-point bending test”, Journal of Wood Science, vol. 57, pp. 100–106, 2011. https://doi.org/10.1007/s10086-010-1150-1
[51] Y.-J. Song, S.-I. Hong, J.-S. Suh and S.-B. Park, “Strength performance evaluation of moment resistance for cylindrical-LVL column using GFRP reinforced wooden pin”, Wood Research, vol. 62, no. 3, pp. 417–426, 2017.
[52] Z. Bednarek, D. Pieniak and P. Ogrodnik, “Wytrzymałość na zginanie i niezawodność kompozytu drewnianego LVL w warunkach podwyższonych temperatur”, Zeszyty Naukowe SGSP, vol. 40, pp. 5–17, 2010. (in Polish)
[53] M. Bakalarz and P. Kossakowski, “The flexural capacity of laminated veneer lumber beams strengthened with AFRP and GFRP sheets”, Technical Transactions, Civil Engineering, vol. 2, pp. 85–94, 2019. https://doi.org/10.4467/2353737XCT.19.023.10159
[54] M. Bakalarz and P. Kossakowski, “Mechanical properties of laminated veneer lumber beams strengthened with CFRP sheets”, Archives of Civil Engineering, vol. 65, no. 2, pp. 57–66, 2019. https://doi.org/10.2478/ace-2019-0018
[55] M. Bakalarz, P. Kossakowski and P. Tworzewski, “Strengthening of bent LVL beams with near-surface mounted (NSM) FRP reinforcement”, Materials, vol. 13, no. 10, article 2350, 2020. https://doi.org/10.3390/ma13102350
[56] B. Kawecki and J. Podgórski, “3D ABAQUS simulation of bent softwood elements”, Archives of Civil Engineering, vol. 66 no. 3, pp. 323–337, 2020. https://doi.org/10.24425/ace.2020.134400
[57] B. P. Gilbert, H. Bailleres, H. Zhang and R. L. McGavin, “Strength modelling of Laminated Veneer Lumber (LVL) beams”, Construction and Building Materials, vol. 149, pp. 763–777, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.153
[58] H. Valipour, N. Khorsandnia, K. Crews and S. Foster, “A simple strategy for constitutive modelling of timber”, Construction and Building Materials, vol. 53, pp. 138–148, 2014. https://doi.org/10.1016/j.conbuildmat.2013.11.100
[59] N. Khorsandnia, H. R. Valipour and K. Crews, “Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law”, Engineering Structures, vol. 46, pp. 606–614, 2013. https://doi.org/10.1016/j.engstruct.2012.08.017
[60] M. Komorowski, “Manual of design and build in the STEICO system, Basic information, Building physics, Guidelines”, Warsaw: Forestor Communication, 2017. (in Polish)
[61] European Committee for Standardization, EN 1990, Eurocode 0, Basis of structural design, European Committee for Standardization, Brussels, Belgium, 2002.
[62] European Committee for Standardization, EN 408, Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties; European Committee for Standardization: Brussels, Belgium, 2012.
[63] European Committee for Standardization, EN 13183-1, Moisture content of a piece of sawn timber - Part 1: Determination by oven dry method; European Committee for Standardization: Brussels, Belgium, 2004.
[64] Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.
[65] H. T. Nguyen and S. E. Kim, “Finite element modeling of push-out tests for large stud shear connectors”, Journal of Constructional Steel Research, vol. 65, pp. 1909–1920, 2009. https://doi.org/10.1016/j.jcsr.2009.06.010
[66] M. P. Budziak and T. Garbowski, “Failure assessment of steel-concrete composite column under blast loading”, Engineering Transactions, vol. 62, no. 1, pp. 61–84, 2014.
[67] M. Sciomenta, L. Spera, C. Bedon, V. Rinaldi, M. Fragiacomo and M. Romagnoli, “Mechanical characterization of novel homogeneous beech and hybrid beech-corsican pine thin cross-laminated timber panels”, Construction and Building Materials, article 121589, 2020. https://doi.org/10.1016/j.conbuildmat.2020.121589
[68] Ł. Polus and M. Szumigała, “An experimental and numerical study of aluminium-concrete joints and composite beams”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 375–390, 2019. https://doi.org/10.1016/j.acme.2018.11.007
[69] A. Pełka-Sawenko, T. Wróblewski and M. Szumigała, “Validation of computational models of steel-concrete composite beams”, Engineering Transactions, vol. 64, no. 1, pp. 53–67, 2016.
[70] P. Szewczyk and M. Szumigała, “Welding deformation in a structure strengthened under load in an empirical-numerical study”, in Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM), Gdansk, Poland, 8-11 September 2015, M. Kleiber, T. Burczynski, K. Wilde, J. Gorski, K. Winkelmann and L. Smakosz, Eds., London: CRC Press, 2016, pp. 563–566.
[71] P. Szewczyk, “Wzmacnianie pod obciążeniem belek zespolonych stalowo-betonowych w eksperymencie numerycznym i fizycznym”, PhD thesis, West Pomeranian University of Technology in Szczecin, Poland, 2016. (in Polish)
[72] P. Różyło, “Stateczność i stany graniczne ściskanych cienkościennych profili kompozytowych”, Lublin: Wydawnictwo Politechniki Lubelskiej, 2019. (in Polish)
[73] P. Rozylo, “Failure analysis of thin-walled composite structures using independent advanced damage models”, Composite Structures, vol. 262, article 113598, 2021. https://doi.org/10.1016/j.compstruct.2021.113598
[74] A. B. Widodo, “Application of laminated veneer lumber (LVL) on the wooden boat construction”, IPTEK The Journal for Technology and Science, vol. 23, no. 1, pp. 8–14, 2012.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

To explore the application of cold-formed thin-walled steel-paper straw board(CTSPSB) composite wall in practical engineering and further meet people’s living requirements, it was proposed to open holes in the composite wall to simulate the doors and windows in practical applications. Two composite wall specimens were tested to study the shear performance of the CTSPSB composite wall. Through the analysis of specimens’ damage forms and experimental data, the characteristic values of bearing capacity and lateral stiffness were obtained. And then, the model of the composite wall was built by ANSYS, and finite element analysis (FEA) results were consistent with the experimental results, which could verify the feasibility of the finite element model. Moreover, the model needed to open holes and extensive parameter analysis was carried out. The FEA results indicate the most reasonable distance between screws around the opening is 150 mm; the most suitable spacing between the small studs is 400 mm; the position of the opening has the least influence on the shear performance, and the difference between the results of the five groups of models is within 5%; while the width of the opening has the greatest impact on the shear performance. Compared with the wall without opening, the bearing capacity of the wall with an opening width of 600 mm, 1200 mm and 1800 mm decreases by 38%, 46% and 52% respectively. Besides, the calculation formula of shear capacity of CTSPSB composite wall with openings was improved, which could be used as experience for practical engineering.
Go to article

Authors and Affiliations

Xiuhua Zhang
1
ORCID: ORCID
Shuijing Xu
1
ORCID: ORCID
Siyu Li
1
ORCID: ORCID

  1. Dept. of Civil Engineering, Northeast Forestry University, Harbin 150040, China
Download PDF Download RIS Download Bibtex

Abstract

The article draws attention to certain aspects of calculating the width of cracks and stresses in composite elements under bending, in which the slab is located in the tension zone. If semi-rigid joints are used in the element, in which the beam is attached to the column by bolts, two types of areas should be distinct in which the reinforcement stresses will be calculated in a different way. The method of calculating stresses in reinforcement will depend on the type of a used joint or on the distance of the considered cross-section from the semi-rigid joint. In order to distinguish the method of calculating stresses in the paper, two areas were introduced: specifically area B and area D. Area B will be the area where the principle of flat sections can be applied, and stresses in the reinforcement are determined using the classical theory by adding the component responsible for the tension stiffening phenomenon. Area D is the area in the vicinity of the semi-rigid joint, where the principle of flat sections cannot be applied. To calculate stresses, consider the balance of joints using the available models of the semi-rigid joint, in particular the spring model. The paper presents the formulas for calculating stresses in the D area for two types semi-rigid joints: joint with a flush end-plate with 2 rows of bolts are used and joint with an extended end-plate with 3 rows of bolts are used.
Go to article

Authors and Affiliations

Marcin Niedośpiał
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more