Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants applied in different ways on the surfaces under friction. In this work, AISI 316 austenitic stainless steel was coated with MoS2, using chemical vapor deposition (CVD) at four different temperatures (400, 500, 600 and 700°C). Coatings properties were investigated using SEM, EDX, XRD and FTIR, Hardness Tester and Roughness tester. The results showed that with simultaneous evaporation of sulfur and molybdenum trioxide (MoO3) in the CVD chamber, a uniform coating layer containing MoS2 and MoO2 phases was formed. Increase in the substrate temperature resulted in the rise in the amount of MoS2 to MoO2 phases. The thickness, grain size and the hardness of the coating were 17-29 μm, 50-120 nm and 260-480 HV respectively. Friction tests carried out using pin-on-plate method under normal loads of 10 N under ambient conditions showed values of the friction coefficient 0.25-0.40.
Go to article

Authors and Affiliations

E. Moradpour
M. Akbarzadeh
M. Zandrahimi
Download PDF Download RIS Download Bibtex

Abstract

Oxidation and indentation properties of silicon carbide-coated carbon composites were investigated to analyze its durability under atmospheric thermal shock conditions. The silicon carbide-coated samples were prepared either with chemical vapor deposition or chemical vapor reaction/chemical vapor deposition hybrid coating. The remnant weight of uncoated and coated samples was investigated after each thermal shock cycle. The surface and cross-section of coated samples were then analyzed to confirm morphological changes of the coating layers. The spherical indentation test for uncoated and coated samples were also performed. As a result, silicon carbide coating improved the oxidation resistance, elastic modulus, and hardness of carbon composites. Hybrid coating drastically enhanced the durability of samples at high temperature in atmospheric conditions.
Go to article

Bibliography

[1] S.J. Park, M.K. Seo, Interface Science and Composites: Volume 18, Academic Press; 1st Edition (2011).
[2] X. Zhu, Z. Yang, H. Li, M. Kang, Proceedings of ICCM-10, Whistler (1995).
[3] X. Qiang, H. Li, Y. Zhang, D. Yao, L. Guo, J. Wei, Corros. Sci. 59, 343-347 (2012). DOI: https://doi.org/10.1016/j.corsci.2012.01.035 [
4] W. Shi, Y. Tan, J. Hao, J. Li, Ceram. Int. 42 (15), 17666-17672 (2016). DOI: https://doi.org/10.1016/j.ceramint.2016.08.083
[5] S.B. Bae, J.E. Lee, J.G. Paik, N.C. Cho, H.I. Lee, Arch. Metall. Mater. 65 (4), 1371-1375 (2020).
[6] S.D. Choi, H.I. Seo, B.J. Lim, I.C. Sihn, J.M. Lee, J.K. Park, K.S. Lee, Compos. Res. 31 (5), 260-266 (2018).
[7] K .S. Lee, Z. Meng, I.C. Sihn, K. Choi, J.E. Lee, S.B. Bae, H.I. Lee, Ceram. Int. 46 (13), 21233-21242 (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.05.211
[8] D.H. Lee, K.S. Lee, T.W. Kim, C. Kim, Ceram. Int. 45 (17), 21348-21358 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.07.121
[9] Z. Li, X. Yin, T. Ma, W. Miao, Z. Zhang, Mater. Trans. 52 (12), 2165-2167 (2011). DOI: https://doi.org/10.2320/matertrans.MAW201103
[10] P.J. Jorgensen, M.E. Wardsworths, I.B. Cuter, J. Am. Cer. Soc. 42 (12), 613-616 (1959). DOI: https://doi.org/10.1111/j.1151-2916.1959.tb13582.x
[11] A. Abdollahi, N. Ehsani, Metall. Mater. Trans. A. 48, 265-278 (2017). DOI: https://doi.org/10.1007/s11661-016-3813-z
[12] K .S. Lee, D.K. Kim, S.K. Lee, B.R. Lawn, J. Korean Ceram. 4 (4), 356-362 (1998).
[13] http://www.tanxw.com/news/xgzx/1654.html, accessed: 26.08.2020.
[14] http://www.360doc.com/content/19/1014/10/9122134_866684074.shtml, accessed: 26.08.2020.
[15] http://cn.chinatungsten.com/Si/thgdxz.html, accessed: 26.08.2020.
[16] https://blog.csdn.net/dxuehui/article/details/52497907, accessed: 26.08.2020.
[17] http://cn.chinatungsten.com/Si/thgdxz.html, accessed: 26.08.2020.
[18] A. Tiwari, S. Natarajan, Applied Nanoindentation in Advanced Materials, John Wiley & Sons (2017). DOI: https://doi.org/10.1002/9781119084501
[19] G .C. Shwartz, K.V. Srikrishnan, Handbook of Semiconductor Interconnection Technology, CRC Press (2006). DOI: https://doi.org/10.1201/9781420017656
Go to article

Authors and Affiliations

Ji Eun Lee
1
ORCID: ORCID
Soo Bin Bae
1
ORCID: ORCID
Nam Choon Cho
1
ORCID: ORCID
Hyung Ik Lee
1
ORCID: ORCID
Zicheng Meng
2
ORCID: ORCID
Kee Sung Lee
2
ORCID: ORCID

  1. Agency for Defense Development, Yuseong P.O. Box 35, Daejeon, 34186, Korea
  2. Kookmin University, School of Mechanical Engineering, JEONGNEUNG-RO 77, SEONGBUK-GU, SEOUL, 02707, KOREA

This page uses 'cookies'. Learn more