Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the research into hygienizing process of chicken manure using calcium peroxide (CaO2) as an environmentally friendly biological deactivation agent. The influence of the addition of CaO2 to chicken manure on the bioavailability of phosphorus was also analyzed. The process of biological deactivation using CaO2, CaO and Ca(OH)2 agents was analyzed applying the disk diffusion method. To optimize the effect of the hygienizing parameters, (CaO2 concentration, pH, temperature and time) on the reduction of Enterobacteriaceae count the Taguchi method was applied. The content of bioavailable phosphorus was measured with the Egner-Riehm method and determined with spectrophotometry. The reduction in bacterial count followed an increase in the concentration of CaO2 in a sample. The optimal experimental conditions (CaO2=10.5 wt.%, pH=9.5, T=40°C, t=180 h) enabled a significant decrease in the Enterobacteriaceae count, from 107 cfu/g to 102 cfu/g. Analysis of the samples with Egner-Riehm method showed that the phosphorus content decreased with the addition of biocide CaO2: from 26.6 mg/l (for 3.5 wt.%) to 3.5 mg/l (for 10.5 wt.%). These values were slightly higher than the content of phosphorus deactivated with Ca(OH)2 i.e., from 11.25 mg/l (for 3.5 wt.%) to 4.49 mg/l (for 10.5 wt.%). The application of CaO2 for hygienizing chicken manure enables effective reduction of Enterobacteriaceae count to an acceptable level (below 1000 cfu/g). In comparison with the traditional techniques of hygienization, the application of CaO2 has a positive effect on the recovery of bioavailable phosphorus.

Go to article

Authors and Affiliations

Angelika Więckol-Ryk
1
Barbara Białecka
2
ORCID: ORCID
Maciej Thomas
3

  1. Central Mining Institute, Department of Risk Assessment and Industrial Safety, Poland
  2. Central Mining Institute, Department of Water Protection, Poland
  3. Chemiqua Water & Wastewater Company, Poland
Download PDF Download RIS Download Bibtex

Abstract

The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.

Go to article

Authors and Affiliations

Nazime Mercan Dogan
Tugba Sensoy
Gulumser Acar Doganli
Naime Nur Bozbeyoglu
Dicle Arar
Hatice Ardag Akdogan
Merve Canpolat
Download PDF Download RIS Download Bibtex

Abstract

The Ca50Mg20Zn12Cu18 was assessed with different methods in order to characterize its basic characteristics, and to determine whether the amorphous alloy of such composition would be applicable as an implant material. The XRD analysis was conducted to conclude the structure of the initial material. The Ca50Mg20Zn12Cu18 ingot sample demonstrates crystalline structure containing two main intermetallic phases, however as-cast plates show features of an amorphous material, revealing the characteristic amorphous halo on the x-ray patterns. It was confirmed by the scanning electron microscopy method and fracture images revealing chevron pattern morphology with shell type fracture. Corrosion resistance, was studied using the potentiostatic analysis. The amorphous samples show higher resistance than the crystalline one. Post corrosion surface of the Ca50Mg20Zn12Cu18 alloy exhibits high concentration of magnesium and calcium hydroxides, forming the globular structures in large aggregates of spherical units.

Go to article

Authors and Affiliations

B. Hrapkowicz
S.T. Lesz
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effects of isoxsuprine hydrochloride applied 14 and 15 days after insemination in Anatolian Merino Sheep on lamb yield and some blood parameters were investigated. The research was conducted during the breeding season and 54 ewes inseminated on the same day were used. The ewes were assigned to three groups. Group I: For the placebo effect, physiological saline was injected on the 14th day into half of the control group and on the 15th day into the other half after insemination (n=18). Group II: Tocolytic drug was injected on the 14th day after insemination (n=18). Grop III: Tocolytic drug was injected on the 15th day after insemination (n=18). As the tocolytic drug, isoxsuprine hydrochloride (HCl) 3 ml (Utelax, Sanovel, Türki̇ye) was used intramuscularly. The number of pregnant and viviparous ewes, single and multiple birth ewes, lambs per viviparous ewes were determined as reproductive parameters. Blood progesterone, cortisol and calcium concentration were determined. As a result, it was determined that the single application of isoxsuprine hydrochloride (3 ml) in the implantation period did not have a positive or negative effect on reproductive parameters, and did not change the blood progesterone, calcium and cortisol concentration in ewes.
Go to article

Authors and Affiliations

N.K. Akbulut
1
Y. Kal
1

  1. Bahri Dağdaş International Agricultural Research Intitute, Ereğli St. No 10Y Karatay / Konya, Türki̇ye
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the effect of high doses of calcium bentonite on the blood parameters, anticoccidial activity and intestinal histology of broiler chickens. Three undred and sixty one-day old broilers were distributed into three treatments (T+VE, T-VE, TB )with three replicates. Amprolium was added to the feed of the positive control group, calcium bentonite powder was added to the TB group, and nothing was added to the feed of the T-VE group. Coccidiosis was induced on day 14, the birds were kept until day 49, measurements of the diffe- rent variables started from week 3, blood samples were collected via wing vein, and fecal oocysts were counted from the intestinal contents of each individual bird using the McMaster techni- que. A decrease in feed consumption, body weight gain and conversion ratio was noticed in the calcium bentonite group. Broilers in the calcium bentonite group (TB ) and negative control group (T-VE ) showed clinical signs of coccidiosis (blood in feces) and the number of oocysts in feces increased with time. Histopathological examinations of the affected caeca also demonstrated excessive tissue damage, hemorrhage, the presence of clusters of large schizonts and merozoites in the tissue, and coccidian oocysts in the lumen. Feed conversion was highest in the T+VE group.

Go to article

Authors and Affiliations

F.M.F. Hayajneh
A. Abdelqader
M.A. Alnimer
M.A. Abedal-Majed
J. Al-Khazaleh
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to basalt reprocessing together with magnetite concentrate in order to obtain ferrous alloy and calcium carbide. The studies have been based on thermodynamic simulation and electric smelting in arc furnace. The thermodynamic simulation has been performed using HSC-5.1 software based on the principle of minimum Gibbs energy. The blend was smelted in arc furnaces. On the basis of the obtained results of combined processing of basalt, it has been established that under equilibrium conditions, the increase in carbon content from 36 to 42 wt % of basalt and concentrate mixture makes it possible to increase the aluminum extraction into the alloy up to 81.4%, calcium into calcium carbide – up to 51.4%, and silicon into the alloy – up to 78.5%. Increase in the amount of lime to 32% allows to increase the content of calcium carbide to 278 dm3/kg. Electric smelting of the blend under laboratory conditions in the presence of 17-32% of lime makes it possible to extract ferrous alloy containing 69.5-72.8% of silicon, 69.1-70.2% of aluminum, and to obtain ferrous alloy containing 49-53% of ΣSi and Al and calcium carbide in the amount of 233-278 dm3/kg. During large-scale laboratory smelting of blend comprised of basalt (38.5%), magnetite concentrate (13.4%), lime (15.4%), and coke fines (32.7%), the ferrous alloy has been produced containing 48-53% of ΣSi and Al, calcium carbide in amount of 240-260 dm3/kg. Extraction of Si and Al into the alloy was 70.4 and 68.6%, respectively; Ca into carbide – 60.3%; Zn and Pb into sublimates – 99.6 and 92.8%, respectively.

Go to article

Authors and Affiliations

V.M. Shevko
G.E. Karataeva
A.D. Badikova
M.A. Tuleev
R.A. Uteeva
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to evaluate the impact of betaine (Bet) and protected calcium butyrate (PCB) supplementation individually and together on the performance, carcass traits, blood biochemistry, and meat quality of growing Japanese quails ( Coturnix coturnix Japonica) from 1 to 42 days old. 144 one-day-old unsexed Japanese quails were randomly assigned to four dietary treatments with six replicates each. All birds were fed a maize-soybean meal diet for 42 days. The control group received no feed additives, while the treatment groups received 1.2 g/kg Bet, 1.0 g/kg PCB, or a combination of both in their diets. The results indicated that Bet and PCB supplementation individually and together did not differ performance, relative weights of heart, gizzard, proventriculus, bursa of Fabricius and pancreas, water holding capacity (WHC), cooking loss (CL), blood biochemical values except for glucose and triglyceride. Bet supplementation significantly increased relative liver weights, while PCB supplementation decreased glucose levels in serum. Moreover, carcass yield was increased and triglyceride value in blood serum, malondialdehyde (MDA), and the pH levels of breast meats both on the 1st and 30st day of post-mortem were decreased in all treatment groups. Therefore, based on these results, the combination of betaine and butyrate improves both carcass yield and meat quality in growing Japanese quails. More research is needed to determine the impact of betaine and butyrate on the structure of amino acids in meat, antioxidant enzyme activity, and the immune system in poultry.
Go to article

Bibliography


  1. Abd El‐Wahab A, Mahmoud RE, Ahmed MF, Salama MF (2019) Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro‐inflammatory cytokines in Japanese quails. Anim Physiol Anim Nutr 103: 1768-1775.
  2. Abudabos AM, Suliman GM, Al-Owaimer AN, Sulaiman AR, Alharthi AS (2021) Effects of nano emulsified vegetable oil and betaine on growth traits and meat characteristics of broiler chickens reared under cyclic heat stress. Animals 11:1911.
  3. Al-Abdullatif AA, Al-Sagan AA, Hussein EO, Saadeldin IM, Suliman GM, Azzam MM, Al-Mufarrej SI, Alhotan RA (2021) Betaine could help ameliorate transport associated water deprivation stress in broilers by reducing the expression of stress-related transcripts and modulating water channel activity. Ital J Anim Sci 20:14-25.
  4. Al-Sagan AA, Al-Yemni AH, Abudabos AM, Al-Abdullatif AA, Hussein EO (2021) Effect of different dietary betaine fortifications on performance, carcass traits, meat quality, blood biochemistry, and hematology of broilers exposed to various temperature patterns. Animals 11: 1555.
  5. Carpenter KJ, Clegg KM (1956) The metabolizable energy of poultry feeding stuffs in relation to their chemical composition. J Sci Food Agric 7: 45-51.
  6. Chamba F, Puyalto M, Ortiz A, Torrealba H, Mallo JJ, Riboty R (2014) Effect of partially protected sodium butyrate on performance, digestive organs, intestinal villi and E. coli development in broilers chickens. Int J Poult Sci 13: 390-396.
  7. Chen R, Yang M, Song YD, Wang RX, Wen C, Liu Q, Zhou YM, Zhuang S (2022) Effect of anhydrous betaine and hydrochloride betaine on growth performance, meat quality, postmortem glycolysis, and antioxidant capacity of broilers. Poult Sci 101: 101687.
  8. Czerwiński J, Højberg O, Smulikowska S, Engberg RM, Mieczkowska A (2012) Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch Anim Nutr 66: 102-116.
  9. Dawood MA, Eweedah NM, Elbialy ZI, Abdelhamid AI (2020) Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J Therm Biol 88: 102500.
  10. Deepa K, Purushothaman MR, Vasanthakumar P, Sivakumar K (2017) Serum biochemical parameters and meat quality influenced due to supplementation of sodium butyrate in broiler chicken. Int J Livest Res 7: 108-116.
  11. Egbuniwe IC, Uchendu CN, Obidike IR (2021) Ameliorative effects of betaine and ascorbic acid on endocrine and erythrocytic parameters of sexually-maturing female Japanese quails during the dry season. J Therm Biol 96: 102812.
  12. El-Bahr SM, Shousha S, Khattab W, Shehab A, El-Garhy O, El-Garhy H, Mohamed S, Ahmed-Farid O, Hamad A, Sabike I (2021) Impact of dietary betaine and metabolizable energy levels on profiles of proteins and lipids, bioenergetics, peroxidation and quality of meat in Japanese quail. Animals 11: 117.
  13. Elnesr SS, Ropy A, Abdel-Razik AH (2019) Effect of dietary sodium butyrate supplementation on growth, blood biochemistry, haematology and histomorphometry of intestine and immune organs of Japanese quail. Animal 13: 1234-1244.
  14. Esteve-Garcia E, Mack S (2000) The effect of dl-methionine and betaine on growth performance and carcass characteristics in broilers. Anim Feed Sci Technol 87: 85-93.
  15. Gümüş E, Küçükersan S, Bayraktaroğlu AG, Sel T (2021) Effect of dietary supplementation of some natural antioxidants and coated calcium butyrate on carcass traits, some serum biochemical parameters, lipid peroxidation in meat and intestinal histomorphology in broilers. Ankara Univ Vet Fak Derg 68: 237-244.
  16. Jiang Y, Zhang W, Gao F, Zhou G (2015) Micro-encapsulated sodium butyrate attenuates oxidative stress induced by corticosterone exposure and modulates apoptosis in intestinal mucosa of broiler chickens. Anim Prod Sci 55: 587.
  17. Leeson S, Namkung H, Antongiovanni M, Lee EH (2005) Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult Sci 84: 1418-1422.
  18. Liu J, Song R, Su S, Qi N, Li Q, Xie Z, Yu S (2022) Betaine promotes fat accumulation and reduces injury in Landes Goose hepatocytes by regulating multiple lipid metabolism pathways. Animals 12: 1530.
  19. Mátis G, Petrilla J, Kulcsár A, van den Bighelaar H, Boomsma B, Neogrády Z, Fébel H (2019) Effects of dietary butyrate supplementation and crude protein level on carcass traits and meat composition of broiler chickens. Arch Anim Breed 62: 527-536.
  20. National Research Council (1994) Nutrient Requirements of Poultry, 9th ed., The National Academies Press, Washington DC.
  21. Pascual A, Trocino A, Birolo M, Cardazzo B, Bordignon F, Balarin C, Carraro L, Xiccato G (2020) Dietary supplementation with sodium butyrate: growth, gut response at different ages, and meat quality of female and male broiler chickens. Ital J Anim Sci 19: 1134-1145.
  22. Pillai PB, Fanatico AC, Beers KW, Blair ME, Emmert JL (2006) Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine. Poult Sci 85: 90-95.
  23. Rama Rao SV, Raju MV, Panda AK, Saharia P, Sunder GS (2011) Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J Anim Sci 24: 662-669.
  24. Rice EM, Aragona KM, Moreland SC, Erickson PS (2019) Supplementation of sodium butyrate to postweaned heifer diets: Effects on growth performance, nutrient digestibility, and health. J Dairy Sci 102: 3121-3130.
  25. Shihab MA, Olgun O, Abdulqader AF (2020) The effect of supplementation of sodium butyrate to diets with different levels of metabolic energy contents on performance, carcass and some blood parameters in growing quails. Journal of Bahri Dagdas Animal Research 9: 79-87.
  26. Su SY, Dodson MV, Li XB, Li QF, Wang HW, Xie Z (2009) The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14α in Landes goose fatty liver. Comp Biochem Physiol A Mol Integr Physiol 154: 308-314.
  27. Uzunoğlu K, Yalçın S (2019) Effects of dietary supplementation of betaine and sepiolite on performance and intestinal health in broilers. Ankara Univ Vet Fak Derg 66: 221-229.
  28. Yang M, Chen R, Song YD, Zhou YM, Liu Q, Zhuang S (2022a) Effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens. Br Poult Sci 63: 351-359.
  29. Yang Q, Chen B, Robinson K, Belem T, Lyu W, Deng Z, Ramanathan R, Zhang G (2022b) Butyrate in combination with forskolin alleviates necrotic enteritis, increases feed efficiency, and improves carcass composition of broilers. J Animal Sci Biotechnol 13: 3.
  30. Yin F Yu H, Lepp D, Shi X, Yang X, Hu J, Leeson S, Yang C, Nie S, Hou Y, Gong J (2016) Transcriptome analysis reveals regulation of gene expression for lipid catabolism in young broilers by butyrate glycerides. Plos One 11: e0160751.
  31. Zeb A, Ullah F (2016) A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J Anal Chem 2016: 9412767.
  32. Zhang W, Jiang Y, Zhu QM, Gao F, Dai S, Chen JC, Zhou G (2011a) Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 52: 292-301.
  33. Zhang W, Gao F, Zhu QM, Zhou G, Jiang Y, Dai S (2011b) Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 90: 2592-2599.
Go to article

Authors and Affiliations

E. Gümüş
1
B. Sevim
2
O. Olgun
3
S. Küçükersan
4

  1. Department of Veterinary, Eskil Vocational School, Aksaray University, Şehit Recep Bozdağ Cad., 68800 Eskil, Aksaray, Turkey
  2. Department of Food Processing, Technical Sciences Vocational School, Aksaray University, Hacılar Harmanı Mah, 12. Bulvar No:2, Merkez, 68100 Aksaray, Turkey
  3. Department of Animal Science, Faculty of Agriculture, Selçuk University, Alaeaddin Keykubat Yerleşkesi, 42130, Selcuklu, Konya, Turkey
  4. Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Zübeyde Hanım Mahallesi Şehit Ömer Halisdemir Bulvarı No: 9/C, 06070, Altındağ, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Therefore, the aim of the present study was to evaluate the possible effect of bilberry fruit (Vaccinium myrtillus L.) supplement in a daily diet on the cognitive behaviour of the rats and the expression of paravalbumin (PV) in populations of hippocampal neurons. It has been postulated that the antioxidants present in bilberry fruit may act as neuroprotective factors playing also a significant role as memory enhancements. Forty Wistar rats with a similar average body weight (460 ± 0.4 g) were divided into four groups (n=10 per group). The control group received standard feed (210 g/week), whereas animals of experimental groups received standard feed supplemented with bilberry (per os) at consumed doses of 2 g (group I), 5 g (group II), and 10 g/kg b.w./ /day (group III). After three months of feeding with bilberry, the modified elevated plus-maze test (mEPM) was performed. After 32 weeks of feeding, brains were collected and PV-immunoreactive (ir) neurons were immunohistochemically visualized. In the modified elevated plus-maze test, transfer latency examined 2 h and 24 h after the acquisition session was significantly shorter (p<0.05) in the group II in comparison with the control group. In CA1 and CA2/CA3 hippocampal fields as well as dentate gyrus of all experimental groups, a significant (p<0.05) decrease in number of PV-ir neurons were found. In relation to the control group, the mean subpopulation of PV-ir neurons found in groups II and III were significantly reduced. The subpopulations of PV-ir neurons found in DG of all experimental groups were significantly reduced in comparison to the control. In conclusion the in the present paper we demonstrated a relationship between the diet rich in a bilberry fruit and process of memory as well as numbers of calcium- binding protein-expressing hippocampal neurons. Our results may be source of basic knowledge for further research aiming at neuroprotective role of the bilberry fruit.

Go to article

Authors and Affiliations

K. Borowiec
M. Matysek
D. Szwajgier
G. Biała
M. Kruk-Słomka
R. Szalak
J. Ziętek
M.B. Arciszewski
Z. Targoński
Download PDF Download RIS Download Bibtex

Abstract

The elemental composition and morphology of aerobic granules in sequencing batch reactors (GSBRs) treating high-nitrogen digester supernatant was investigated. The investigation particularly focused on the effect of the number of anoxic phases (one vs. two) in the cycle and the dose of external organics loading (450 mg COD/(L·cycle) vs. 540 mg COD/(L·cycle)) on granule characteristics. Granules in all reactors were formed of many single cells of rod and spherical bacteria. Addition of the second anoxic phase in the GSBR cycle resulted in enhanced settling properties of the granules of about 10.6% and at the same time decreased granule diameter of about 19.4%. The study showed that external organics loading was the deciding factor in the elemental composition of biomass. At 540 mg COD/(L·cycle) the granules contained more weight% of C, S and N, suggesting more volatile material in the granule structure. At lower organics loadings granules had the higher diameter of granules which limited the diffusion of oxygen and favored precipitation of mineral compounds in the granule interior. In this biomass higher content of Mg, P and Ca, was observed.

Go to article

Authors and Affiliations

Agnieszka Cydzik-Kwiatkowska
Paulina Rusanowska
Katarzyna Głowacka
Download PDF Download RIS Download Bibtex

Abstract

Effects of solution treatment on room temperature mechanical properties were studied in cast AZ91 (Mg-9%Al-1%Zn-0.2%Mn) and AZ91-0.5%Ca alloys. In as-cast state, the Ca addition contributed to the suppression of discontinuous β phase precipitation and the formation of Al2Ca phase. After solution treatment, the AZ91 alloy had only a small amount of Al8Mn5 particles, while β and Al2Ca phases were still present in the Ca-containing alloy. In as-cast state, the AZ91-0.5%Ca alloy showed better yield strength and hardness than the AZ91 alloy. The solution treatment increased the elongation in both alloys, which eventually led to the increase in ultimate tensile strength. The solution treatment resulted in a marked decrease in yield strength and hardness in the AZ91 alloy, whereas the decrements in those values were relatively negligible in the Ca-containing alloy due to the residual phases and solution hardening effect of Ca.

Go to article

Authors and Affiliations

Joong-Hwan Jun
Download PDF Download RIS Download Bibtex

Abstract

This article presents results of studies on multicriteria optimisation in the decopperisation process of flash smelting slags coming from the process of decopperisation at the "Głogów II" Copper Smelter. Measurements of viscosity were conducted using a high-temperature viscometer manufactured by Brookfield company. An addition in the form of calcium fluoride has an advantageous influence on decreasing the liquidus temperature of slag, and the effect of decreasing viscosity at the participation of calcium fluoride is significant. A motivation to conduct studies on viscosity of decopperised slags is an optimisation of the process of decopperisation at an improvement of this process parameters, i.e. the time of melt per one production cycle and consumption of electric power in the whole process. The efficiency of optimisation of the process course depends not only on an accepted criterion of the quality of controlling, a type of technological parameters, but also, to large extent, on characteristics and features of these parameters. CaCO3 currently added to the process of decopperisation efficiently decreases viscosity of flash slag, at the same time has influence on an increase of the yield of copper in alloy, but on the other hand, it increases the mass of slag, artificially under representing concentration of this metal. The article is completed with a conclusion of discussed issues, stating that a search for a new technological addition is still necessary,
Go to article

Authors and Affiliations

M. Wędrychowicz
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

Carbonic anhydrase is an important enzyme that can play a significant role in the processes of lowering carbon dioxide concentration in the atmosphere. The aim of the work was to investigate the extracellular carbonic anhydrase (CA) production by the bacteria Pseudomonas fragi. In the research, we focused on the evaluation of the phase of bacterial growth correlated with carbonic anhydrase production and on the evaluation of induction of CA production by calcium carbonate concentration in the nutrient medium. Presented data indicated that calcium carbonate can serve as the only carbon source for Pseudomonas fragi, inducing carbonic anhydrase secretion to culture broth. The enzyme was produced mainly in the adaptation growth phase reaching the maximal activity at the end of this phase or at the beginning of the growth phase. The maximal enzyme activity detected in all batches was at a similar level. The enzyme activity was constant but lower in the exponential phase growth. Therefore, the enzyme production is not growth-dependent, but it is correlated with bacteria adaptation to cultivation conditions.
Go to article

Authors and Affiliations

Andrzej Tietz
1
Małgorzata M. Jaworska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faulty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this research, the effect of sodium silicate (Na2SiO3) on the geopolymerization of fly ash type F (low calcium) has been studied. The variations of Na2SiO3 used in the synthesized geopolymers were 19, 32, and 41wt%. The fly ash from three different power plant sources was characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analyzer (PSA), and Scanning Electron Microscopy (SEM). Fly ash-based geopolymers were tested for mechanical strength and setting time. The best geopolymer was obtained by adding 32% Na2SiO3, produced a compressive strength of 21.62 MPa with a setting time of 30 hours. Additions of 19wt% Na2SiO3 failed to form geopolymer paste while the addition of 41wt% Na2SiO3 decreased the mechanical strength of the geopolymer. Higher calcium content in low calcium fly ash produces stronger geopolymer and faster setting time.
Go to article

Bibliography

[1] Y . Zhang, R. Xiao, X. Jiang, W. Li, X. Zhu, B. Huang, J. Cleaner. Prod. 273, 122970 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122970
[2] İ.İ. Atabey, O. Karahan, C. Bilim, C.D. Atiş, Constr. Build. Mater. 264 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2020.120268
[3] C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 101655 (2020). DOI : https://doi.org/10.1016/j.jobe.2020.101655
[4] A. Abdullah, K. Hussin, M.M.A.B. Abdullah, Z. Yahya, W. Sochacki, R.A. Razak, K. Błoch, H. Fansuri, Materials 14, 1111 (2021). DOI: https://doi.org/10.3390/ma14051111
[5] Y .S. Wang, Y. Alrefaei, J.G. Dai, Cem. Concr. Res. 127, 105932 (2020). DOI : https://doi.org/10.1016/j.cemconres.2019.105932
[6] F. Demir, E. Moroydor Derun, J. Non-Cryst. Solids. 524, 119649 (2019). DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119649
[7] S. Top, H. Vapur, M. Altiner, D. Kaya, A. Ekicibil, J. Mol. Struct. 1202, 127236 (2020). DOI : https://doi.org/10.1016/j.molstruc.2019.127236
[8] O .H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021). DOI : https://doi.org/10.3390/magnetochemistry7010009
[9] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021). DOI : https://doi.org/10.3390/ma14010056
[10] M .A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021). DOI : https://doi.org/10.3390/ma14051310
[11] P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling, J. Cleaner Prod. 270 122389 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122389
[12] K .U. Ambikakumari Sanalkumar, M. Lahoti, E.H. Yang, Constr. Build. Mater. 225, 283-291 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.07.140
[13] D . Panias, I.P. Giannopoulou, T. Perraki, Colloids Surf. A. 301, 246-254 (2007). DOI : https://doi.org/10.1016/j.colsurfa.2006.12.064
[14] A .M. Kaja, A. Lazaro, Q.L. Yu, Constr. Build. Mater. 189, 1113- 1123 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.09.065
[15] M .N.S. Hadi, M. Al-Azzawi, T. Yu, Constr. Build. Mater. 175, 41-54 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.092
[16] X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, J. Cleaner Prod. 125, 253-267 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.03.019.
[17] T . Hemalatha, A. Ramaswamy, J. Cleaner Prod. 147, 546-559 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.01.114
[18] C. Belviso, Prog. Energy Combust. Sci. 65, 109-135 (2018). DOI : https://doi.org/10.1016/j.pecs.2017.10.004
[19] R.E. Hidayati, G.R. Anindika, F.S. Faradila, C.I.B. Pamungkas, I. Hidayati, D. Prasetyoko, H. Fansuri, IOP Conf. Ser. Mater. Sci. Eng. Sci. Eng. 864 (2020). DOI : https://doi.org/10.1088/1757-899X/864/1/012017.
[20] J .G. Jang, H.K. Lee, Constr. Build. Mater. 102, 260-269 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.172
[21] H. Fansuri, N. Swastika, L. Atmaja, Akta Kimindo 3, 61-66 (2008).
[22] P. Rożek, M. Król, W. Mozgawa, Spectrochim. Acta – Part A. 198, 283-289 (2018). DOI: https://doi.org/10.1016/j.saa.2018.03.034
[23] V . Gupta, D.K. Pathak, S. Siddique, R. Kumar, S. Chaudhary, Constr. Build. Mater. 235, 117413 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2019.117413
[24] A . Mehta, R. Siddique, Constr. Build. Mater. 150, 792-807 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.067.
[25] S.K. Nath, S. Kumar, Constr. Build. Mater. 233, 117294 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117294
[26] A . De Rossi, M.J. Ribeiro, J.A. Labrincha, R.M. Novais, D. Hotza, R.F.P.M. Moreira, Process Saf. Environ. Prot. 129, 130-137 (2019). DOI: https://doi.org/10.1016/j.psep.2019.06.026
[27] L .N. Assi, E. Eddie Deaver, P. Ziehl, Constr. Build. Mater. 167, 372-380 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.01.193
[28] D .-W. Zhang, D. Wang, Z. Liu, F. Xie, Constr. Build. Mater. 187, 674-680 (2018). DOI: https://doi.org/10.1016/j.conbuildmat. 2018.07.205
[29] P. Risdanareni, P. Puspitasari, E. Januarti Jaya, MAT EC Web Conf. 97 (2017). DOI : https://doi.org/10.1051/matecconf/20179701031
[30] B .G. Kutchko, A.G. Kim, Fuel. 85, 2537-2544 (2006). DOI : https://doi.org/10.1016/j.fuel.2006.05.016
[31] W.W.A. Zailani, A. Bouaissi, M.M. Al Bakri Abdullah, R. Abd Razak, S. Yoriya, M.A.A. Mohd Salleh, M.A.Z. Mohd Remy Rozainy, H. Fansuri, Appl. Sci. 10, 1-14 (2020). DOI : https://doi.org/10.3390/app10093321
[32] D .D. Burduhos Nergis, P. Vizureanu, L. Andrusca, D. Achitei, IOP Conference Series: Materials Science and Engineering. 572, 012026 (2019). DOI : https://doi.org/10.1088/1757-899X/572/1/012026
[33] D .D. Burduhos Nergis, P. Vizureanu, I. Ardelean, A.V. Sandu, O. Corbu, E. Matei, Materials 13, 3211 (2020). DOI : https://doi.org/10.3390/ma13020343
[34] D .W. Zhang, D.M. Wang, F.Z. Xie, Constr. Build. Mater. 207, 284-290 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.02.149
[35] L .H. Buruberri, D.M. Tobaldi, A. Caetano, M.P. Seabra, J.A. Labrincha, Elsevier Ltd, 2019. DOI : https://doi.org/10.1016/j.jobe.2018.11.017
[36] H. Fansuri, D. Prasetyoko, Z. Zhang, D. Zhang, Asia-Pac. J. Chem. Eng. 7 (1), 73-79 (2012). DOI: https://doi.org/10.1002/apj.493
Go to article

Authors and Affiliations

Ririn Eva Hidayati
1
Fitria Sandi Faradilla
1
Dadang Dadang
1
Lia Harmelia
1
Nurlina Nurlina
2
Didik Prasetyoko
1
Hamzah Fansuri
1

  1. Institut Teknologi Sepuluh Nopember, Department of Chemistry, Faculty of Science and Data Anlytics , Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  2. Universitas Tanjungpura, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Pontianak 78111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Calcium Sulfoaluminate cements (CSA) may be an alternative to Portland cements due to their very high early strength and more environmentally friendly production technology, however they are characterized by a short setting time and high cost. A possible solution to these problems is to mix CSA cement with other binders or additives. In order to test this possibility, CSA cement was mixed with Portland cement and limestone in the amount of 10, 20 and 30 wt. %. A hydration heat test was carried out in the first 72 hours after the components were mixed, measured were compressive and flexural strength after 1, 2, 7 and 28 days, and rheological properties, including early shrinkage. A negative interaction between CSA and CEM I 42.5R was observed, leading to deterioration of mechanical properties of the mortars. The study did not indicate a similar negative interaction between CSA cement and limestone.
Go to article

Authors and Affiliations

Jacek Gołaszewski
1
ORCID: ORCID
Małgorzata Gołaszewska
2
ORCID: ORCID

  1. Prof., DSc., PhD., Eng., Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
  2. PhD., Eng., Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The general objective of this research has been to identify the factors and conditions of migration of CaCO3 within glaciers and their marginal zones in Svalbard . Special attention has been paid to the cryochemical processes responsible for precipitation of calcium carbonate in icing (naled ice) formed near fronts of polythermal glaciers during winter. Estimates of the importance of those processes in respect of the general mineral mass transfer in the glacier system are attempted here. Field studies concerning the carbonate contents in proglacial sediments and icing fields were carried out in the Werenskioldbreen and the Elisebreen basins (S and NW Spitsbergen respectively). A functional model of CaCO3 migration in a glacier system is proposed which indicates the various paths of the mineral mass flow. Considerations on intensity of glacial processes permitted quantitative estimation of the particular components in respect to the Werenskioldbreen basin. Cryochemical processes do not appear to be of overriding importance in such migration but, clearly, they play a specific role in retaining CaCO3 in the proglacial zone on land. The crystalline forms present in the icings, which have many lattice defects, are very easily re-dissolved or removed by wind.

Go to article

Authors and Affiliations

Elżbieta Bukowska-Jania
Download PDF Download RIS Download Bibtex

Abstract

The influence of external factors, temperature and flow velocity on the corrosion processes St3 in model solutions petrochemical plant recycled water with high salinity and hardness without open systems and in the presence of the inhibiting composition. It was found that an increase in temperature leads to a linear increase in corrosion rates, and the change in circulating water flow rate leads to the extreme nature of corrosion processes; optimal conditions are determined. Recommended use of cathodic inhibitors or mixed type inhibitor, in particular, the composition "SVOD-BI" (means for controlling the biological corrosion), which can significantly reduce the effect of temperature and flow on the corrosion rate St3, promotes the growth and strengthening of the oxide film in the presence of oxygen, increases the degree of protection of steel and preventing the formation of at its surface carbonate-calcium deposits.
Go to article

Authors and Affiliations

G. Tatarchenko
N. Biloshitska
O. Vodolazskyy
Download PDF Download RIS Download Bibtex

Abstract

Shoot tips excised from shoot culture of Salvia officinalis were encapsulated in 2% or 3% (w/v) sodium alginate and exposed to 50 mM calcium chloride for complexation. Immediately or after 6, 12 or 24 weeks of storage at 4°C, the synthetic seeds were cultured for 6 weeks on half-strength MS medium supplemented with indole-3-acetic acid (IAA) (0.1 mg/l) and solidified with 0.7% agar. The frequency of shoot and root emergence from encapsulated shoot tips was affected by the concentrations of sodium alginate and additives in the gel matrix (sucrose, gibberellic acid, MS nutrient medium) as well as duration of storage. The frequency of shoot and root induction of non-stored synthetic seeds was highest with shoot tips encapsulated with 2% sodium alginate containing 1.5% sucrose and 0.5 mg/l gibberellic acid (GA3). Shoot tips maintained their viability and ability to develop shoots even after 24 weeks of storage when they were encapsulated in 3% alginate with 1/3 MS medium, sucrose (1.5%) and GA3 (0.25 mg/l). Root formation tended to decrease with storage time. Overall, 90% of the plantlets derived from stored and non-stored synthetic seeds survived in the greenhouse and grew to phenotypically normal plants. This procedure can enable the use of synthetic seed technology for germplasm conservation of S. officinalis, a plant species of high medical and commercial value.

Go to article

Authors and Affiliations

Izabela Grzegorczyk
Halina Wysokińska
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study has been to determine the effect of fertilisation with urea-ammonium nitrate (UAN) solution enriched with P, Mg or S on the content of macronutrients in the grain and straw of maize. The following fertilisers were tested in the field experiment: ammonium nitrate, urea, UAN – 32% N; RSM+S – 26% N + 3% S; RSM+P(Medium) – 26% N and 4.80% P; RSM+P(Starter) – 21% N and 7.86% P; UAN + Mg – 20% N + 4% Mg. In each year of the experiment, significant differentiation in the contents of P, K, Ca, Mg and S in maize grain and straw was observed, depending on the applied nitrogen fertilisation. However, considering the average values from each treatment achieved over the three years, it was demonstrated that the fertilisation significantly changed only the content of P and S in grain and K and Ca in straw of maize. The removal of nutrients was the highest in the second year of the research and amounted in kg∙ha –1: P – about 100, K – about 350, Ca – about 80, Mg – about 35 and S – about 31, which in turn were differentiated over the years of the experiment in the three years. The removal of P, K, Mg and S also significantly depended on fertilisation. Significant differences, however, most often concerned the control treatment relative to the fertilised ones. The contribution of grain to the accumulation of nutrients also varied significantly in the three years of the experiment. Significantly the lowest share of grain in terms of P and S accumulation was noted in maize grown without N fertilisation.
Go to article

Authors and Affiliations

Jadwiga Wierzbowska
1
ORCID: ORCID
Stanisław Sienkiewicz
1
ORCID: ORCID
Arkadiusz Światły
1

  1. University of Warmia and Mazury in Olsztyn, Chair of Agricultural and Environmental Chemistry, Oczapowskiego 8, 10-719, Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Setting time in geopolymers is known as the time taken for the transition phase of liquid to solid of the geopolymer system in which is represented in the initial setting and final setting. Setting time is significant specifically for application in the construction field. This study intends to determine the setting time of high calcium fly ash geopolymers and the properties of the geopolymers after setting (1-day age). This includes the determination of heat evolved throughout geopolymerization using Differential Scanning Calorimeter. After setting properties determination includes compressive strength and morphology analysis at 1-day age. High calcium fly ash was used as geopolymer precursor. Meanwhile, for mixing design, the alkali activator was a mixture of sodium silicate and sodium hydroxide (concentration varied from 6M-14M) with a ratio of 2.5 and a solid-to-liquid ratio of 2.5. From this study, it was found that high calcium fly ash geopolymer with 12M of NaOH has a reasonable setting time which is suitable for on-site application as well as an optimal heat evolved (–212 J/g) which leads to the highest compressive strength at 1-day age and no formation of microcracks observed on the morphology. Beyond 12M, too much heat evolved in the geopolymer system can cause micro-cracks formation thus lowering the compressive strength at 1-day age.
Go to article

Authors and Affiliations

Rosnita Mohamed
1
ORCID: ORCID
Rafiza Abd Razak
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Liyana Ahmad Sofri
1
ORCID: ORCID
Ikmal Hakem Aziz
1
ORCID: ORCID
Noor Fifinatasha Shahedan
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The process of vitrification of the cumulus-oocyte complex (COCs) often results in cold shock. When warming, heat shock occurs which can disrupt the balance of intracellular calcium (Ca2+) intensity. Drastic changes in temperature cause Reactive Oxygen Species (ROS), affecting changes on Ca2+ in COCs. The role of calcium is needed for oocyte activation in the fertilization process. The purpose of this study was to measure the expression of Ca2+ and the intensity of Ca2+ in COCs after vitrification. The study was divided into 2 groups, the control group (C) of fresh COCs, and the treatment group (T) of COCs after vitrification. After vitrification for 24 hours, then thawing, the expression of Ca2+ was examined using the Immunocytochemistry (ICC) method and the intensity of calcium (Ca2+) with a Confocal Laser Scanning Microscope (CLSM). The research data obtained were analyzed statistically by T-Test. The results showed that the expression of Ca2+ in the control group (12.00±0.00) was different from the treatment group (0.35±0.79). The intensity of Ca2+ in the control group (1059.43±489.59) was different from the treatment group (568.21±84.31). The conclusion of this study is that cryopreservation affects calcium in COCs; there were differences in the expression and the intensity of Ca2+ between fresh COCs and COCs after vitrification. Ca2+ intensity of COCs after vitrification was concentrated in the nucleus, while in fresh COCs it was concentrated in the cytoplasm.
Go to article

Bibliography


Barceló-Fimbres M, Seidel GE Jr (2007) Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Mol Reprod Dev 74: 1395-1405.
Bonte D, Thys V, de Sutter P, Boel A, Leybaert L, Heindryckx B (2020) Vitrification negatively affects the Ca2+ releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod Biomed Online 40: 13-25.
Borges E Jr, Braga DP, de Sousa Bonetti TC, Iaconelli A Jr, Franco JG Jr (2009) Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod BioMed Online 18: 45-52.
Chen SU, Yang YS (2009) Slow freezing or vitrification of oocytes: their effects on survival and meiotic spindles, and the time schedule for clinical practice. Taiwan J Obstet Gynecol 48: 15-22.
Cheon B, Lee HC, Wakaii T,Fissore RA (2013) Ca2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation. Mol Biol Cell 24: 1396-1410.
Chithiwala ZH, Lee HC, Hill DL, Jellerette-Nolan T, Fissore R, Grow D, Dumesic DA (2015) Phospholipase C-zeta deficiency as a cause for repetitive oocyte fertilization failure during ovarian stimulation for in vitro fertilization with ICSI: a case report. J Assist Reprod Genet 32: 1415-1419.
Daddangadi A, Uppangala S, Kalthur G, Talevi R, Adiga SK (2020) Germinal stage vitrification is superior to MII stage vitrification in prepubertal mouse oocytes. Cryobiology 93: 49-55.
De Munck N, Vajta G (2017) Safety and efficiency of oocyte vitrification. Cryobiology 78: 119-127.
Favetta V, Colombo RC, Júnior JFM, de Faria RT (2017) Light sources and culture media in the in vitro growth of the Brazilian orchid Microlaelia lundii. Semin Cienc Agrar 38: 1775-1783.
Fraser LR (1982) Ca2+ is required for mouse sperm capacitation and fertilization in vitro. J Androl 3: 412-419.
Gómez-Fernández C, López-Guerrero AM, Pozo-Guisado E, Álvarez IS, Martín-Romero FJ (2012) Calcium signaling in mouse oocyte maturation: the roles of STIM1, ORAI1 and SOCE. Mol Hum Reprod 18: 194-203.
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J (2017) Cryopreservation and Its clinical applications. Integr Med Res 6: 12-18.
Kang HJ, Lee SH, Park YS, Lim CK, Ko DS, Yang KM, Park DW (2015) Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin Exp Reprod Med 42: 45-50.
Karabulut S, Aksünger Ö, Ata C, Sağıroglu Y, Keskin I (2018) Artificial oocyte activation with calcium ionophore for frozen sperm cycles. Syst Biol Reprod Med 64: 381-388.
Kasai M, Mukaida T (2004) Cryopreservation of animal and human embryos by vitrification. Reprod Biomed Online 9: 164-170
Leibo SP (2008) Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology 69: 37-47.
Marques CC, Santos-Silva C, Rodrigues C, Matos JE, Moura T, Baptista MC, Horta AEM, Bessa RJB, Alves SP, Soveral G, Pereira RMLN (2018) Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectants and calcium in the vitrification media. Cryobiology 81: 4-11.
Mukaida T, Takahashi K, Kasai M (2002) Blastocyst cryopreservation: ultrarapid vitrification using cryoloop technique. Reprod BioMed Online 6: 221-225.
Nowak M, Madej JA, Dziegeil P (2007) Intensity of COX2 expression in cells of soft tissue fibrosacrcomas in dogs as related to grade of tumour malignancy. Bull Vet Inst Pulawy 51: 275-279.
Orief Y, Schultze-Mosgau A, Dafopoulos K, Al-Hasani S (2005) Vitrification: Will it replace the conventional gamete cryopreservation techniques? Middle East Fertil Soc 10: 171-184.
Rahman ANA, Abdullah R, Embong WK (2007) Goat embryo development from in vitro matured oocytes of heterogeneous quality through intracytoplasmic sperm injection technique. Biotechnol 6: 373-382.
Ramadan WM, Kashir J, Jones C, Coward K (2012) Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commum Signal 10: 1-20.
Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C (2017) Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 23: 139-155.
Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392: 1736-1788.
Sanaei B, Movaghar B, Valojerdi MR, Ebrahimi B, Bazrgar M, Jafarpour F, Nasr-Esfahani MH (2018) An improved method for vitrification of in vitro matured ovine oocytes; beneficial effects of ethylene glycol tetraacetic acid, an intracellular calcium chelator. Cryobiology 84: 82-90.
Stachecki JJ, Cohen J (2004) An overview of oocyte cryopreservation. Reprod Biomed Online 9: 152-163.
Wang C, Machaty Z (2013) Calcium influx in mammalian eggs. Reproduction 145: R97-R105.
Wang F, Yuan RY, Li L, Meng TG, Fan LH, Jing Y, Zhang RR, Li YY, Liang QX, Dong F, Hou Y, Schatten H, Sun QY, Ou XH (2018) Mitochondrial regulation of [Ca2+]i oscillations during cell cycle resumption of the second meiosis of oocyte. Cell Cycle 17: 1471-1486.
Widjiati W, Aulanni’am A, Hendrawan VF (2017) The effect of vitrification of oocytes cumulus complex apoptosis of mice (Mus musculus) to apoptosis, rate of fertilization and embryo quality. Int J Pharm Clin Res 9: 179-182
Widjiati W, Boediono A, Sumitro SB, Hinting A, Aulani’am, Susilowati T (2012) Isolation and identification of transforming growth factor β from in vitro matured cumulus oocyte complexes. Hayati J Biosci 19: 6-10.
Go to article

Authors and Affiliations

W. Widjiati
1
Z. Faizah
2
N. Darsini
2
V.F. Hendrawan
3
H.N. Karima
4
C. Chotimah
4
S.B. Sumitro
5
L.R. Yustinasari
6
A.A.M.N. Kasman
7
J.M. Ntoruru
8
E.M. Luqman
6

  1. Post Graduate School of Universitas Airlangga Surabaya, Indonesia
  2. Department of Biomedical Science, Faculty of Medicine Universitas Airlangga Surabaya, Indonesia
  3. Department of Reproduction, Faculty of Veterinary Medicine, Universitas Brawijaya Malang, Indonesia
  4. Bio-Science Central Laboratory, Universitas Brawijaya Malang, Indonesia
  5. Department of Biology, Faculty of Science, Universitas Brawijaya Malang, Indonesia
  6. Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga Surabaya, Indonesia
  7. Faculty of Health Science, Universitas Muhammadiyah Mataram, Mataram, Indonesia
  8. Research Assistant, Meru University, Kenya
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the production of galvanized sheet steels with organic coatings applied to its surfaces has considerably expanded. Phosphating of the zinc surfaces raises its roughness and surface tension, providing high adhesion of subsequent organic coatings and respectively, significant increasing of their protective properties. The paper presents the results obtained in the investigation of combined anti-corrosion coatings, including formation of phosphate films on galvanized steel surfaces followed by the application of three types of paint and varnish coatings. The indicators characterizing the phosphating preparation (density, pH, conductivity, acid capacity) as well as the thickness of the coatings were measured. The chemical composition of the phosphate films, their morphology and topography were determined by means of EDX and SEM, respectively. The adhesion, elasticity and impact toughness of the organic coatings, with and without phosphating treatment of the zinc surfaces were measured. The corrosion resistance of the combined coatings in a model sodium chloride solution was also determined.
Go to article

Authors and Affiliations

D. Fachikova
1
ORCID: ORCID
T. Liubenova
1
G. Ilieva
1

  1. University of Chemical Technology and Metallurgy, Faculty of Chemical Technology, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

An attempt was made in the present work to study the compressive strength and microstructure of geopolymer containing high calcium fly ash (HCFA) and silica fume. Concentration of sodium hydroxide solution 8M, 10M, 12M & 14M, liquid to binder ratio 0.5 and sodium hydroxide to sodium silicate ratio 2.5 were selected for the mixes. Geopolymer mortar test results indicated that the mix with 40% silica fume by the weight of HCFA yielded higher compressive strength under ambient curing. The XRD pattern typically shows the major portion of amorphous phase of geopolymer. The existence of C-A-S-H gel, N-A-S-H gel and hydroxysodalite gel products were observed through SEM which developed dense microstructure and thus enhanced strength of HCFA and silica fume geopolymer.

Go to article

Authors and Affiliations

V.C. Prabha
V. Revathi
Download PDF Download RIS Download Bibtex

Abstract

To fabricate a lead-free solder with better properties, a surface-modified precipitate calcium carbonate (PCC) was added as a reinforcement phase to tin-zinc (Sn-9Zn) solder. The surface modification of PCC was done by using electroless plating to deposit nickel (Ni) layer on the PCC. Based on microstructure analysis, a thin layer of Ni was detected on the reinforcement particle, indicating the Ni-coated PCC was successfully formed. Next, composite solder of Sn-9Zn-xNi-coated PCC (x = 0, 0.25, 0.50, 1.00 wt.%) was prepared. The morphology and phase changes of the composite solder were evaluated by using optical microscope and X-ray diffraction (XRD). Significant refinement on the grain size of Zn was seen with the additions of Ni-coated PCC, with a new phase of Ni3Sn4 was detected along with the phases of Sn and Zn. The wettability of Sn-9Zn was also improved with the presence of Ni-coated PCC, where the wetting angle decreased from 28.3° to 19.4-23.2°. Brinell hardness test revealed up to 27.9% increase in hardness for the composite solder than the pristine Sn-9Zn solder. This phenomenon contributed by the increased in dislocation resistance through Zener pinning effect and Zn grain refinement within the composite solder which enhanced the overall properties of the composite solder.
Go to article

Authors and Affiliations

L.W. Keong
1
F.F. Zainal
1
ORCID: ORCID
M.Z. Kasmuin
1
A.A. Mohamad
2
M.F.M. Nazari
1
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
B. Jeż
4
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CEGeoGTech) 02600, Arau, Perlis, Malaysia
  2. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Advanced Soldering Materials Group, 14300 Nibong Tebal, Penang, Malaysia
  3. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  4. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, l9c Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more