Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper a three-dimensional model for determination of a microreactor's length is presented and discussed. The reaction of thermocatalytic decomposition has been implemented on the base of experimental data. Simplified Reynolds-Maxwell formula for the slip velocity boundary condition has been analysed and validated. The influence of the Knudsen diffusion on the microreactor's performance has also been verified. It was revealed that with a given operating conditions and a given geometry of the microreactor, there is no need for application of slip boundary conditions and the Knudsen diffusion in further analysis. It has also been shown that the microreactor's length could be practically estimated using standard models.

Go to article

Authors and Affiliations

Janusz Badur
Paweł Jóźwik
Michał Karcz
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to model the performances of energy and exergy on a Trombe wall system to enable an adequate thermal comfort. The main equations for the heat transfer mechanisms were developed from energy balances on subcomponents of the Trombe wall with the specification of the applicable initial and boundary conditions. During the incorporation of the PCM on the Trombe wall, the micro-encapsulation approach was adopted for better energy conservation and elimination of leakage for several cycling of the PCM. The charging and discharging of the PCM were equally accommodated and incorporated in the simulation program. The results of the study show that an enhanced energy storage could be achieved from solar radiation using PCM-augmented system to achieve thermal comfort in building envelope. In addition, the results correspond with those obtained from comparative studies of concrete-based and fired-brick augmented PCM Trombe wall systems, even though a higher insolation was used in the previous study.
Go to article

Bibliography

[1] I. Blasco Lucas, L. Hoesé, and D. Pontoriero. Experimental study of passive systems thermal performance. Renewable Energy, 19(1-2):39–45, 2000. doi: 10.1016/S0960-1481(99)00013-0.
[2] A. Mastrucci. Experimental and Numerical Study on Solar Walls for Energy Saving, Thermal Comfort and Sustainability of Residential Buildings. Ph.D. Thesis, University Politecnica delle Marche, Italy, 2013.
[3] A. Chel, J.K. Nayak, and G. Kaushik. Energy conservation in honey storage building using Trombe wall. Energy and Building, 40(9):1643–1650, 2008. doi: 10.1016/j.enbuild.2008.02.019.
[4] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, and D. Rousse. Experimental study of small-scale solar wall integrating phase change material. Solar Energy, 86(1):208–219, 2012. doi: 10.1016/j.solener.2011.09.026.
[5] C.M. Lai and C.M. Chiang. How phase change materials affect thermal performance: hollow bricks. Building Research & Information, 34(2):118–130, 2011. doi: 10.1080/09613210500493197.
[6] K. Sankaranarayanan, H.J. van der Kooi, and J. de Swaan Arons. Efficiency and Sustainability in the Energy and Chemical Industries. Scientific Principles and Case Studies. CRC Press, Boca Raton, 2010. doi: 10.1201/EBK1439814703.
[7] F. Kuznik and J. Virgone. Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10):2038–2046, 2009. doi: 10.1016/j.apenergy.2009.01.004.
[8] D. Feldman, M.M. Shapiro, D. Banu, and C.J. Fuks. Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energy Materials, 18(3-4):201–216, 1989. doi: 10.1016/0165-1633(89)90054-3.
[9] W.I. Okonkwo and C.O. Akubuo. Trombe wall system for poultry brooding. International Journal of Poultry Science, 6(2):125–130, 2007. doi: 10.3923/ijps.2007.125.130.
[10] L. Cao, F. Tang, and G. Fang. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72:31–37, 2014. doi: 10.1016/j.enbuild.2013.12.028.
[11] F. Abbassi and L. Dehmani. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings, 105:119–128, 2015. doi: 10.1016/j.enbuild.2015.07.042.
[12] M.J. Huang, P.C. Eames, and N. J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Solar Energy Materials and Solar Cells, 90(13):1951–1960, 2006. doi: 10.1016/j.solmat.2006.02.002.
[13] S.A. Ajah, B.O. Ezurike, and H.O. Njoku. A comparative study of energy and exergy performances of a PCM-augmented cement and fired-brick Trombe wall systems. International Journal of Ambient Energy, 1–18, 2020. doi: 10.1080/01430750.2020.1718753.
[14] H.O. Njoku, B.E. Agashi, and S.O. Onyegegbu. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Solar Energy, 157:744–761, 2017. doi: 10.1016/j.solener.2017.08.079.
[15] C. Ji, Z. Qin, S. Dubey, F.H. Choo, and F. Duan. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Applied Energy, 205:1–12, 2017. doi: 10.1016/j.apenergy.2017.07.101.
Go to article

Authors and Affiliations

Benjamin O. Ezurike
1
ORCID: ORCID
Stephen A. Ajah
1
ORCID: ORCID
Uchenna Nwokenkwo
1
ORCID: ORCID
Chukwunenye A. Okoronkwo
1
ORCID: ORCID

  1. Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

In slowly flaring horns the wave fronts can be considered approximately plane and the input impedance can be calculated with the transmission line method (short cones in series). In a rapidly flaring horn the kinetic energy of transverse flow adds to the local inertance, resulting in an effective increase in length when it is located in a pressure node. For low frequencies corrections are available. These fail at higher frequencies when cross-dimensions become comparable to the wavelength, causing resonances in the cross-direction. To investigate this, the pipe radiating in outer space is modelled with a finite difference method. The outer boundaries must be fully absorbing as the walls of an anechoic chamber. To achieve this, Berenger's perfectly matched layer technique is applied. Results are presented for conical horns, they are compared with earlier published investigations on flanges. The input impedance changes when the largest cross-dimension (outer diameter of flange or diameter of the horn end) becomes comparable to half a wavelength. This effect shifts the position of higher modes in the pipe, influencing the conditions for mode locking, important for ease of playing, dynamic range and sound quality.

Go to article

Authors and Affiliations

Cornelis Nederveen
Download PDF Download RIS Download Bibtex

Abstract

The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.

Go to article

Bibliography

[1] F. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations. Europhys. Lett., 9:663, 1989.
[2] YH. Qian, D. d’Humières, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett., 17:479, 1992.
[3] X. Shan, X.F. Yuan, and H. Chen. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech., 550:413–441, 2006.
[4] X. He and L.S. Luo. A priori derivation of the lattice Boltzmann equation. Phys. Rev. E, 55:R6333, 1997.
[5] D. d’Humieress. Generalized lattice-Boltzmann equations. Prog. Astronaut. Aeronaut., pages 450–458, 1992.
[6] P. Lallemand and L.S. Luo. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E, 61:6546, 2000.
[7] P.J. Dellar. Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J. Comput. Phys., 190:351–370, 2003.
[8] A. JC. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation. J. Fluid Mech., 271:285–309, 1994.
[9] Z. Guo and C. Shu. Lattice Boltzmann method and its applications in engineering. World Scientific, 2013.
[10] X.Y. He, Q.S. Zou, L.S. Luo, and M. Dembo. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys., 87:115–136, 1997.
[11] I. Ginzbourg and P.M. Adler. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II. France, 4:191–214, 1994.
[12] J.E. Broadwell. Study of rarefied shear flow by the discrete velocity method. J. Fluid Mech., 19:401–414, 1964.
[13] R. Gatignol. Kinetic theory boundary conditions for discrete velocity gases. Phys. Fluids (1958-1988), 20:2022–2030, 1977.
[14] S. Ansumali and I. V Karlin. Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E, 66:026311, 2002.
[15] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids., 9:1591–1598, 1997.
[16] S. Bennett. A lattice Boltzmann model for diffusion of binary gas mixtures. PhD thesis, University of Cambridge, 2010.
[17] D.R. Noble, S. Chen, G. Georgiadis, and R.O. Buckius. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids, 7(1):203–209, 1995.
[18] S. Bennett, P. Asinari, and P.J. Dellar. A lattice Boltzmann model for diffusion of binary gas mixtures that includes diffusion slip. I nt. J. Numer. Meth. Fluids, 69:171–189, 2012.
[19] R. Allen and T. Reis. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities. Prog. Comp. Fluid Dyn.: An Int. J., 16:216–231, 2016.
[20] T. Reis and P.J. Dellar. Moment-based formulation of Navier–Maxwell slip boundary conditions for lattice Boltzmann simulations of rarefied flows in microchannels. Phys. Fluids, 2012.
[21] A. Hantsch, T. Reis, and U. Gross. Moment method boundary conditions for multiphase lattice Boltzmann simulations with partially-wetted walls. Int. J. Multiphase Flow, 7:1–14, 2015.
[22] U. Ghia, K.N. Ghia, and C.T. Shin. High-resolutions for incompressible flow using the Navier- Stokes equations and a multigrid method. J. Comput. Phys., 48:387–411, 1982.
[23] M. Sahin and R.G. Owens. A novel fully implicit finite volume method applied to the lid-driven cavity problem—part i: High Reynolds number flow calculations. Int. J. Numer. Meth. Fluids, 42:57–77, 2003.
[24] O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids, 27:421–433, 1998.
[25] S. Hou, Q. Zou, G.D. Chen, S.and Doolen, and A.C. Cogley. Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys., 118:329–347, 1995.
[26] M.A. Mussa, S.Abdullah, C.S.N. Azwadi,N. Muhamad, K. Sopian, S. Kartalopoulos, A. Buikis, N. Mastorakis, and L. Vladareanu. Numerical simulation of lid-driven cavity flow using the lattice Boltzmann method. In WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering. WSEAS, 2008.
[27] L.S. Luo,W. Liao, X. Chen,Y. Peng,W. Zhang, et al. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E, 83(5):056710, 2011.
[28] X. He, X. Shan, and G.D. Doolen. Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E, 57:R13, 1998.
[29] R. Benzi, S. Succi, and M. Vergassola. Turbulence modelling by nonhydrodynamic variables. Europhys. Lett., 13:727, 1990.
[30] P. J Dellar. Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations. Phys. Rev. E, 65:036309, 2002.
[31] J. Latt and B. Chopard. Lattice Boltzmann method with regularized pre-collision distribution functions. Comput. Fluid., 72:165–168, 2006.
[32] C.H. Bruneau and C. Jouron. An efficient scheme for solving steady incompressible Navier- Stokes equations. J. Comput. Phys., 89:389–413, 1990.
[33] S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A.C. Cogley. Simulation of cavity flow by the lattice boltzmann method. J. Comp. Phys., 118(2)(2):329 –347, 1995.
[34] G. Deng, J. Piquet, P. Queutey, and M. Visonneau. Incompressible flow calculations with a consistent physical interpolation finite volume approach. Comput. Fluids, 23:1029–1047, 1994.
Go to article

Authors and Affiliations

Seemaa Mohammed
1
Tim Reis
2

  1. School of Computing Electronics and Mathematics, Plymouth University, UK
  2. Department of Mathematical Sciences, University of Greenwich, UK
Download PDF Download RIS Download Bibtex

Abstract

The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.
Go to article

Authors and Affiliations

Manthri Sathyanarayana
1
Tamtam Ramakrishna Goud
2

  1. Osmania University, Department of Mathematics, University College of Science, Hyderabad – 500007, Telangana Sate, India
  2. Osmania University, Department of Mathematics, University College of Science, Saifabad, Hyderabad – 500004, Telangana Sate, India
Download PDF Download RIS Download Bibtex

Abstract

An efficiency of the nonsingular meshless method (MLM) was analyzed in an acoustic indoor problem. The solution was assumed in the form of the series of radial bases functions (RBFs). Three representative kinds of RBF were chosen: the Hardy’s multiquadratic, inverse multiquadratic, Duchon’s functions. The room acoustic field with uniform, impedance walls was considered. To achieve the goal, relationships among physical parameters of the problem and parameters of the approximate solution were first found. Physical parameters constitute the sound absorption coefficient of the boundary and the frequency of acoustic vibrations. In turn, parameters of the solution are the kind of RBFs, the number of elements in the series of the solution and the number and distribution of influence points. Next, it was shown that the approximate acoustic field can be calculated using MLM with a priori error assumed. All approximate results, averaged over representative rectangular section of the room, were calculated and then compared to the corresponding accurate results. This way, it was proved that the MLM, based on RBFs, is efficient method in description of acoustic boundary problems with impedance boundary conditions and in all acoustic frequencies.

Go to article

Authors and Affiliations

Edyta Prędka
Adam Brański
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Two optimization aspects of the meshless method (MLM) based on nonsingular radial basis functions (RBFs) are considered in an acoustic indoor problem. The former is based on the minimization of the mean value of the relative error of the solution in the domain. The letter is based on the minimization of the relative error of the solution at the selected points in the domain. In both cases the optimization leads to the finding relations between physical parameters and the approximate solution parameters. The room acoustic field with uniform, impedance walls is considered.

As results, the most effective Hardy’s Radial Basis Function (H-RBF) is pointed out and the number of elements in the series solution as a function of frequency is indicated. Next, for H-RBF and fixed n, distributions of appropriate acoustic fields in the domain are compared. It is shown that both aspects of optimization improve the description of the acoustic field in the domain in a strictly defined sense.

Go to article

Authors and Affiliations

Edyta Prędka
Anna Kocan-Krawczyk
Adam Jan Brański
Download PDF Download RIS Download Bibtex

Abstract

The conditions for accurately intercepting hypersonic vehicles by low-speed interceptors in the terminal guidance process are examined, considering the general form of a guidance scheme. First, based on the concept of the engagement geometry, three interception scenarios are established considering different manoeuvring configurations of the interceptors and hypersonic vehicle. Second, the boundary conditions for intercepting hypersonic vehicles (with speeds higher than those of the interceptors) are specified for the three scenarios, considering several factors: the speed, path angle, line-of-sight angle, and available overload of the interceptor; path angle and manoeuvrability of the hypersonic vehicle; and relative distance between the interceptor and vehicle. A series of simulations are performed to clarify the influence of each factor on the interception performance in the three interception scenarios. The challenges associated with accurately intercepting hypersonic vehicles by low-speed interceptors are summarised, and several recommendations for designing guidance laws are presented.
Go to article

Authors and Affiliations

Shuangxi Liu
1
ORCID: ORCID
Shijun Liu
2
Binbin Yan
3
ORCID: ORCID
Tong Zhang
1
Xu Zhang
1
Jie Yan
1

  1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
  2. Shanghai Aerospace Equipment Manufacturer Co., Ltd, Shanghai 200245, China
  3. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
Download PDF Download RIS Download Bibtex

Abstract

The subject of many controversies has been both the understanding of the limits of scientific knowledge and the indication of the “boundary” conditions of orders placed for it. In some cases, we are in favor of widening these boundaries in such a way that they can also include religious and quasi-religious beliefs, while in others we are in favor of narrowing them so that knowledge and faith can be clearly distinguished. In these considerations, I cite examples of positions on both issues that have in the past met with both relatively wide acceptance and serious reservations. It is worth taking a closer look at them, because it turns out that in science nothing is decided once and for all, and what seemed to belong to the past sometimes comes back with even greater force. I show this on two examples of contemporary positions on the issue of understanding the limits of scientific knowledge.
Go to article

Authors and Affiliations

Zbigniew Drozdowicz
1
ORCID: ORCID

  1. Instytut Kulturoznawstwa, Uniwersytetim. Adama Mickiewicza
Download PDF Download RIS Download Bibtex

Abstract

The cuboidal room acoustics field is modelled with the Fourier method. A combination of uniform, impedance boundary conditions imposed on walls is assumed, and they are expressed by absorption coefficient values. The absorption coefficient, in the full range of its values in the discrete form, is considered. With above assumptions, the formula for a rough estimation of the cuboidal room acoustics is derived. This approximate formula expresses the mean sound pressure level as a function of the absorption coefficient, frequency, and volume of the room separately. It is derived based on the least-squares approximation theory and it is a novelty in the cuboidal room acoustics. Theoretical considerations are illustrated via numerical calculations performed for the 3D acoustic problem. Quantitative results received with the help of the approximate formula may be a point of reference to the numerical calculations.
Go to article

Authors and Affiliations

Anna Kocan-Krawczyk
Adam Brański
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT) forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics) and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

Go to article

Authors and Affiliations

Krzysztof Stawicki
Beata Szuflitowska
Marcin Ziolkowski
Download PDF Download RIS Download Bibtex

Abstract

On the basis of Euler-Bernoulli beam theory, the large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The von Karman type nonlinear strain-displacement relationship is employed where the ends of the beam are constrained to move axially. The material properties are assumed to be graded in the thickness direction according to the power-law and sigmoid distributions. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law index, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible.

Go to article

Authors and Affiliations

Mehdi Javid
Milad Hemmatnezhad
Download PDF Download RIS Download Bibtex

Abstract

For underground mine workings, the shape of the computational domain may be difficult to define. Historically, the geometry models of mine drifts were not accurate representations of the object but rather a simplified approximation. To fully understand a phenomenon and save time on computations, simplification is often required. Nevertheless, in some situations, a detailed depiction of the geometry of the object may be necessary to obtain adequate simulation results. Laser Scanning enables the generation of 3D digital models with precision beyond the needs of applicable CFD models. Images composed of millions of points must be processed to obtain geometry suitable for computational mesh generation. A section of an underground mine excavation has been selected as an example of such transformation. Defining appropriate boundary conditions, especially the inlet velocity profile, is a challenging issue. Difficult environmental conditions in underground workings exclude the application of the most efficient and precise methods of velocity field measurements. Two attempts to define the inlet velocity profile have been compared. The first one used a sequence of simulations starting from a flat profile of a magnitude equal to the average velocity. The second one was based on the sixteen-point simultaneous velocity measurement, which gave consistency with measurement results within the range of applied velocity measurement method uncertainty. The article introduces a novel methodology that allows for more accurate replication of the mine excavation under study and the attainment of an appropriate inlet velocity profile, validated by a satisfactory correspondence between simulation outcomes and field measurements. The method involves analysing laser-scanned data of a mine excavation, conducting multi-point velocity measurements at specific cross-sections of the excavation that are unique to mining conditions, and utilising the k-ω SST turbulence model that has been validated for similar ventilation problems in mines.
Go to article

Authors and Affiliations

Jakub Janus
1
ORCID: ORCID
Jerzy Krawczyk
1
ORCID: ORCID

  1. Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the main issues of design process of HVAC systems and ventilation ducts in particular is correct modelling of coupling of the flow field and acoustic field of the air flowing in such systems. Such a coupling can be modelled in many ways, one of them is using linearised Euler equations (LEE). In this paper, the method of solving these equations using finite element method and open source tools is decribed. Equations were transformed into functional and solved using Python language and FEniCS software. The non-reflective boundary condition called buffer layer was also implemented into equations, which allowed modelling of unbounded domains. The issue, influence of flow on wave propagation, could be adressed using LEE equations, as they take non-uniform mean flow into account. The developed tool was verified and results of simulations were compared with analytical solutions, both in one- and two-dimensional cases. The obtained numerical results are very consistent with analytical ones. Furthermore, this paper describes the use of the developed tool for analysing a more complex model. Acoustic wave propagation for the backward-facing step in the presence of flow calculated using Navier-Stokes equations was studied.

Go to article

Authors and Affiliations

Paweł Łojek
Ireneusz Czajka
Andrzej Gołaś
Download PDF Download RIS Download Bibtex

Abstract

Excitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoretically considered in this work. The dynamic equation for an excess density which specifies the entropy mode, has been obtained by means of the method of projections. It takes the form of the diffusion equation with an acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient is proportional to the thermal conduction, and the acoustic force is proportional to the total attenuation. Theoretical description of instantaneous heating allows to take into account aperiodic and impulsive sounds. Acoustic heating in a half-space and in a planar resonator is discussed. The aim of this study is to evaluate acoustic heating and determine the contribution of thermal conduction and mechanical viscosity in different boundary problems. The conclusions are drawn for the Dirichlet and Neumann boundary conditions. The instantaneous dynamic equation for variations in temperature, which specifies the entropy mode, is solved analytically for some types of acoustic exciters. The results show variation in temperature as a function of time and distance from the boundary for different boundary conditions.

Go to article

Authors and Affiliations

Anna Perelomova
Download PDF Download RIS Download Bibtex

Abstract

In the formulation, the existence, uniqueness and stability of solutions and parameter perturbation analysis to Riemann-Liouville fractional differential equations with integro-differential boundary conditions are discussed by the properties of Green’s function and cone theory. First, some theorems have been established from standard fixed point theorems in a proper Banach space to guarantee the existence and uniqueness of positive solution. Moreover, we discuss the Hyers-Ulam stability and parameter perturbation analysis, which examines the stability of solutions in the presence of small changes in the equation main parameters, that is, the derivative order η, the integral order β of the boundary condition, the boundary parameter ξ , and the boundary value τ. As an application, we present a concrete example to demonstrate the accuracy and usefulness of the proposed work. By using numerical simulation, we obtain the figure of unique solution and change trend figure of the unique solution with small disturbances to occur in different kinds of parameters.
Go to article

Authors and Affiliations

Nan Zhang
1
Lingling Zhang
2
ORCID: ORCID
Mercy Ngungu
3
Adejimi Adeniji
4
Emmanuel Addai
2

  1. College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, ChinaCollege of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  2. College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  3. Human Sciences Research Council (HSRC), South Africa
  4. Tshwane university of Technology, South Africa
Download PDF Download RIS Download Bibtex

Abstract

A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.

Go to article

Authors and Affiliations

Ruixian Ma
Zhansheng Liu
Con J. Dooloan
Danielle J. Moreau
Michał Czarnecki

This page uses 'cookies'. Learn more