Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work presents the results of numerical modeling of Karman vortex street generation performed with ANSYS/FLUENT package application. The influence of the mechanical elements located downstream of the bluff body on the vortex frequency has been found during earlier laboratory investigations. Five various geometrical configurations have been tested. Considerable differences in pictures of distributions of pressure, horizontal and vertical velocities have appeared for various configurations. Qualitative as well as quantitative results are presented in the paper. They confirm the significant dependence of the Karman vortex street parameters on the meter configuration.

Go to article

Authors and Affiliations

Grzegorz Pankanin
Download PDF Download RIS Download Bibtex

Abstract

This paper is devoted to the problem of the appearance of a stagnation region during Karman vortex shedding. This particular phenomenon has been addressed by G. Birkhoff in his model of vortices generation. Experimental results obtained by various research methods confirm the existence of a stagnation region. The properties of this stagnation region have been described based on experimental findings involving flow visualisation and hot-wire anemometry. Special attention has been paid to the relationship between the existence of a slit in the bluff body and the size of the stagnation region. The slit takes over the role of the stagnation region as an information channel for generating vortices.

Go to article

Authors and Affiliations

Grzegorz Pankanin
Download PDF Download RIS Download Bibtex

Abstract

Gas-liquid flows abound in a great variety of industrial processes. Correct recognition of the regimes of a gasliquid flow is one of the most formidable challenges in multiphase flow measurement. Here we put forward a novel approach to the classification of gas-liquid flow patterns. In this method a flow-pattern map is constructed based on the average energy of intrinsic mode function and the volumetric void fraction of gas-liquid mixture. The intrinsic mode function is extracted from the pressure fluctuation across a bluff body using the empirical mode decomposition technique. Experiments adopting air and water as the working fluids are conducted in the bubble, plug, slug, and annular flow patterns at ambient temperature and atmospheric pressure. Verification tests indicate that the identification rate of the flow-pattern map developed exceeds 90%. This approach is appropriate for the gas-liquid flow pattern identification in practical applications.

Go to article

Authors and Affiliations

Sun Zhiqiang
Gong Hui

This page uses 'cookies'. Learn more