Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Prior knowledge of the autocorrelation function (ACF) enables an application of analytical formalism for the unbiased estimators of variance s2a and variance of the mean s2a(xmacr;). Both can be expressed with the use of so-called effective number of observations neff. We show how to adopt this formalism if only an estimate {rk} of the ACF derived from a sample is available. A novel method is introduced based on truncation of the {rk} function at the point of its first transit through zero (FTZ). It can be applied to non-negative ACFs with a correlation range smaller than the sample size. Contrary to the other methods described in literature, the FTZ method assures the finite range 1 < neff ≤ n for any data. The effect of replacement of the standard estimator of the ACF by three alternative estimators is also investigated. Monte Carlo simulations, concerning the bias and dispersion of resulting estimators sa and sa(×), suggest that the presented formalism can be effectively used to determine a measurement uncertainty. The described method is illustrated with the exemplary analysis of autocorrelated variations of the intensity of an X-ray beam diffracted from a powder sample, known as the particle statistics effect.

Go to article

Authors and Affiliations

Andrzej Zięba
Piotr Ramza
Download PDF Download RIS Download Bibtex

Abstract

The correlation of data contained in a series of signal sample values makes the estimation of the statistical characteristics describing such a random sample difficult. The positive correlation of data increases the arithmetic mean variance in relation to the series of uncorrelated results. If the normalized autocorrelation function of the positively correlated observations and their variance are known, then the effect of the correlation can be taken into consideration in the estimation process computationally. A significant hindrance to the assessment of the estimation process appears when the autocorrelation function is unknown. This study describes an application of the conditional averaging of the positively correlated data with the Gaussian distribution for the assessment of the correlation of an observation series, and the determination of the standard uncertainty of the arithmetic mean. The method presented here can be particularly useful for high values of correlation (when the value of the normalized autocorrelation function is higher than 0.5), and for the number of data higher than 50. In the paper the results of theoretical research are presented, as well as those of the selected experiments of the processing and analysis of physical signals.

Go to article

Authors and Affiliations

Adam Kowalczyk
Anna Szlachta
Robert Hanus

This page uses 'cookies'. Learn more