Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 5
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

W pracy przedstawiono wyniki badań ze ścisłego doświadczenia wazonowego dotyczące oceny przydatności topinamburu do fitoremediacji gleby zanieczyszczonej metalami ciężkimi. Średnia zawartość badanych pierwiastków mieściła się w granicach: 0,65-29,69 mg Cd; 1,40-7,32 mg Pb; 1,76-57,61 mg Ni; 1,65-9,23 mg Cu; 25,04-691,35 mg Zn/kg s.m. Najmniejsze zróżnicowanie w zawartości badanych metali zarejestrowano w przypadku miedzi i ołowiu. Natomiast procentowe pobranie (wykorzystanie) pierwiastków przez testowaną roślinę z wazonu w stosunku do zawartości w glebie wahało się od 2, 14 do 7, I 0% Cd; od 0,03 do 0,57% Pb; od 0,83 do 3,49% Ni; od 0,07 do 2,35% Cu; od 0,97 do 5,39% Zn. Porównując procentowe wykorzystanie metali ciężkich przez topinambur, niezależnie od obiektu można ustalić szereg od wartości najwyższych w następującej kolejności: Cd, Zn, Ni, Cu, Pb. Z powyższego szeregu wynika, że Cd był w największym procencie wykorzystywany przez topinambur, a Pb w najmniejszym. Uzyskane wyniki pozwalają wstępnie stwierdzić, że topinambur mógłby być wykorzystany do rekultywacji gleb zanieczyszczonych metalami ciężkimi.
Przejdź do artykułu

Autorzy i Afiliacje

Jacek Antonkiewicz
Czesława Jasiewicz

Abstrakt

The purpose of the present work is to investigate the effect of dietary-supplemented artichoke ( Cynara scolymus L.) on the mRNA expression of calbindin 1 ( Calb1), osteopontin ( Spp1), albumin ( Alb) and CALB1 protein in the eggshell gland (ESG) of laying hens. A total of 80 ISA Brown hens (each at 40 weeks of age) were randomly divided into two groups: a control and a treated group. All poultry received 130 g/day of compound feed for laying hens but the treated hens’ diet was also supplemented with 3g/kg of dried and milled artichoke ( Cynara scolymus L.). The increase of the Ca content in blood of the treated hens was established. Significantly decrease of Spp1 mRNA transcripts was found in the eggshell gland of the treated hens, while the mRNA level of Alb was increased. The relative expression of Calb1 mRNA tended to increase in the treated group. The expression of calbindin protein in the cytoplasm of glandular cells of the shell gland was defined by immunohistochemical method. Very strong signals of calbindin were observed in the treated group. The supplementation of the laying hens’ diet with dried artichoke ( C. scolymus L.) led to a significant increase of Ca content in blood that was reflected in the changes of expression of the eggshell gland genes involved in the mineralization of eggshell.
Przejdź do artykułu

Autorzy i Afiliacje

D. Abadjieva
1
D. Ankova
1
S. Grigorova
2
E. Kistanova
1

  1. Institute of Biology and Immunology of Reproduction – Bulgarian Academy of Sciences 1113 Sofia, Tzarigradsko shosse 73, Bulgaria
  2. Institute of Animal Science - AA, 2232 Kostinbrod, Bulgaria
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Anaerobic digestion (AD) converts organic matter and biomass waste into biogas, making it an environmentally friendly technology to improve energy resources for a wide range of applications. Jerusalem artichoke straw (JAS) has an enriched content of cellulose and exhibits a high potential for methane production. AD-based production of methane can eff ectively utilize waste JAS. This study investigated the AD performance of JAS to explore the enhancement of methane yields by employing a Box-Behnken experimental design (BBD) of response surface methodology (RSM). The overall goal was to identify the optimal levels of pretreatment factors, including HCl concentration, pretreatment time, and pretreatment temperature, for producing optimal biomethane yields from JAS. The highest value of methane production achieved was 256.33 mL g-1VS by using an optimal concentration of HCl as 0.25 M, a pretreatment time of 10 h, and a pretreatment temperature of 25°C. These results inform the future application of JAS in enhanced methane production.
Przejdź do artykułu

Bibliografia

  1. Adeleke, A.O., Latiff, A.A.A., Al-Gheethi, A.A. & Daud, Z. (2017). Optimization of operating parameters of novel composite adsorbent for organic pollutants removal from POME using response surface methodology,Chemosphere, 174, pp. 232-242. DOI:10.1016/j.chemosphere.2017.01.110.
  2. APHA. (2005). Standard methods for the examination of water & wastewater, American Public Health (Association. ed.), Washington DC: American Public Health Association.
  3. Cai, Y., Zhao, X., Zhao, Y., Wang, H., Yuan, X., Zhu, W., Cui, Z. & Wang, X. (2018). Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability, Bioresource Technology, 250, pp. 163-170. DOI:10.1016/j.biortech.2017.07.151.
  4. Cai, Y., Gallegos, D., Zheng, Z., Stinner, W., Wang, X., Pröter, J. & Schäfer, F. (2021). Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models, Bioresource Technology, 337, 125328. DOI:10.1016/j.biortech.2021.125328.
  5. Ciccoli, R., Sperandei, M., Petrazzuolo, F., Broglia, M., Chiarini, L., Correnti, A., Farneti, A., Pignatelli, V. & Tabacchioni, S. (2018). Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community,Biomass and Bioenergy, 108, pp. 190-197. DOI:10.1016/j.biombioe.2017.11.003.
  6. Gabriel, S.A, Funmilayo, D.F. & Evariste, G.K. (2020). Process Optimisation of Enzymatic Saccharification of Soaking Assisted and Thermal Pretreated Cassava Peels Waste for Bioethanol Production, Waste and Biomass Valorization, 11, 4, pp. 2409-2420. DOI:10.1007/s12649-018-00562-0.
  7. Gnansounou, E. & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review, Bioresource Technology, 101, 13, pp. 4980-4991. DOI:10.1016/j.biortech.2010.02.009.
  8. Gunnarsson, I. B., Svensson, S. E., Johansson, E., Karakashev, D. & Angelidaki, I. (2014). Potential of Jerusalem artichoke (Helianthustuberosus L.) as a biorefinery crop, Industrial Crops & Products, 56, pp. 231-240. DOI:10.1016/j.indcrop.2014.03.010.
  9. Günerhan, Ü., Us, E., Dumlu, L., Yılmaz, V., Carrère, H. & Perendeci, A.N. (2020). Impacts of Chemical-Assisted Thermal Pretreatments on Methane Production from Fruit and Vegetable Harvesting Wastes: Process Optimization, Molecules, 23, 25, 500. DOI:10.3390/molecules25030500.
  10. Hassan, T.M., Hossain, M.S., Kassim, M.H., Ibrahim, M., Mohammad, N.F. & Hussin, M. H. (2020). Optimizing the Acid Hydrolysis Process for the Isolation of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches Using Response Surface Methods, Waste and Biomass Valorization, 11, 6, pp. 2755-2770. DOI:10.1007/s12649-019-00627-8.
  11. Hossain, M. Z., Suely, A., Yun, J., Zhang, G., Faisal, N. A., Qi, X. & J.N. S. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production, Renewable and Sustainable Energy Reviews, 105, pp. 105-128. DOI:10.1016/j.rser.2019.01.048.
  12. Kafle, Gopi Krishna, Kim & Sang Hun. (2013). Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation, Applied Energy, 103, pp. 61-72. DOI:10.1016/j.apenergy.2012.10.018.
  13. Khalid, H., Cai, F., Zhang, J., Zhang, R., Wang, W., Liu, G. & Chen, C. (2019). Optimizing key factors for biomethane production from KOH-pretreated switchgrass by response surface methodology, Environmental science and pollution research international, 26, 24, pp. 25084-25091. DOI:10.1007/s11356-019-05615-y.
  14. Kim, M., Kim, B., Nam, K. & Choi, Y. (2018). Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw, Biochemical Engineering Journal, 140, pp. 108-114. DOI:10.1016/j.bej.2018.09.012.
  15. Kim, S., Park, J.M. & Kim, C.H. (2013). Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromycesmarxianus CBS1555, Applied biochemistry and biotechnology, 169, 5, pp. 1531-1545. DOI:10.1007/s12010-013-0094-5.
  16. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Isaias Emilio Paulino do Carmo. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp. 98-108. DOI:10.24425/aep.2019.128646.
  17. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.E., Bjornsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production, Bioresource Technology, 102, pp. 3457-3465. DOI:10.1016/j.biortech.2010.10.126.
  18. Li, C., Liu, G., Nges, I. A. & Liu, J. (2016). Enhanced biomethane production from Miscanthuslutarioriparius using steam explosion pretreatment, Fuel, 179, pp. 267-273. DOI:10.1016/j.fuel.2016.03.087.
  19. Liu, J., Yang, M., Zhang, J., Zheng, J., Xu, H., Wang, Y. & Wei, Y. (2018). A comprehensive insight into the effects of microwave-H2O2 pretreatment on concentrated sewage sludge anaerobic digestion based on semi-continuous operation, Bioresource Technology, 256, pp. 118-127. DOI:10.1016/j.biortech.2018.01.126.
  20. Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G. & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke, Carbohydrate Polymers, 121, pp. 315-319. DOI:10.1016/j.carbpol.2014.12.055.
  21. Long, X., Shao, H., Liu, L., Liu, L. & Liu, Z. (2016). Jerusalem artichoke: A sustainable biomass feedstock for biorefinery, Renewable and Sustainable Energy Reviews, 54, pp. 1382-1388. DOI:10.1016/j.rser.2015.10.063.
  22. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.P., Carrere, H. (2012). Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials, Environmental science & technology, 6, 46, pp. 12217-12225. DOI:10.1021/es303132t.
  23. Nges, A. I., Li, C., Wang, B., Xiao, L., Yi, Z., Liu, J. (2016). Physio-chemical pretreatments for improved methane potential of Miscanthuslutarioriparius, Fuel, 166, pp. 29-35. DOI:10.1016/j.fuel.2015.10.108.
  24. Nowicka, A., Zieliński, M., Dębowski, M., Dudek, M. (2021). Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment, Energies, 14, 8018. DOI:10.3390/EN14238018.
  25. Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H. & Youk, J.H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydrate Research, 340, 15, pp. 2376-2391. DOI:10.1016/j.carres.2005.08.007.
  26. Oyekanmi, A.A., Ahmad,A., MohdSetapar, S.H., Alshammari, M.B., Jawaid, M., Hanafiah, M.M., Abdul Khalil, H.P.S. & Vaseashta, A. (2021a). Sustainable Duriozibethinus-Derived Biosorbents for Congo Red Removal from Aqueous Solution: Statistical Optimization, Isotherms and Mechanism Studies, Sustainability, 13, 13264. DOI:10.3390/SU132313264.
  27. Oyekanmi, A.A., Alshammari, M.B., Ibrahim, M.N.M., Hanafiah, M.M., Elnaggar, A.Y., Ahmad, A., Oyediran, A.T., Rosli, M.A., Mohd, Setapar, S.H., Nik, Daud, N.N. & Hussein, E.E. (2021b). Highly Effective Cow Bone Based Biocomposite for the Sequestration of Organic Pollutant Parameter from Palm Oil Mill Effluent in a Fixed Bed Column Adsorption System, Polymers (Basel), 27, 14, 86. DOI:10.3390/polym14010086.
  28. Passos, F., Felix, L., Rocha, H., Pereira, Jde, O., de, Aquino, S. (2016). Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production, Bioresource Technology, 209, pp. 305-312. DOI:10.1016/j.biortech.2016.03.006.
  29. Passos, F., Ortega, V. & Donoso-Bravo, A. (2017). Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation, Bioresource Technology, 227, pp. 239-246. DOI:10.1016/j.biortech.2016.12.034.
  30. Paudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M. & Lee, J.W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges, Bioresource Technology, 245, pp. 1194-1205. DOI:10.1016/j.biortech.2017.08.182.
  31. Pfariso, M., Eugéne, R., Annie, F. A. C & Johann, F. G. (2021). Maximising the Benefits of Enzyme Synergy in the Simultaneous Saccharification and Fermentation of Jerusalem Artichoke (Helianthus tuberosus) Tuber Residues into Ethanol, Waste and Biomass Valorization.Waste Biomass Valor, 13, pp. 535–546. DOI:10.1007/S12649-021-01488-W.
  32. Pokój, T., Gusiatin, M. Z., Bułkowska, K. & Dubis, B. (2014). Production of biogas using maize silage supplemented with residual glycerine from biodiesel manufacturing, Archives of Environmental Protection, 40, 4, pp. 17-29. DOI:10.2478/aep-2014-0035.
  33. Shen, J., Zhang, J., Wang, W., Liu, G. & Chen, Ch. (2019). Assessment of pretreatment effects on anaerobic digestion of switchgrass: Economics-energy-environment (3E) analysis, Industrial Crops & Products, 145, 111957. DOI:10.1016/j.indcrop.2019.111957.
  34. Song, Z., Yang, G., Liu, X., Yan, Z., Yuan, Y. & Liao, Y. (2014). Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLoS One, 2, 9. DOI:10.1371/journal.pone.0093801.
  35. Tian, W., Li, J., Zhu, L., Li, W., He, L., Gu, L., Deng, R., Shi, D., Chai, H. & Gao M. (2021). Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition, Renewable Energy, 177,pp. 21-32. DOI:10.1016/J.RENENE.2021.06.042.
  36. Van Soest P.J., Robertson J.B. & Lewis B.A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, Journal of Dairy Science, 74, 10, pp. 3583–3597. DOI:10.3168/jds.S0022-0302(91)78551-2.
  37. Wang, D.L., Ai, P., Yu, L., Tan, Z.X. & Zhang, Y.L. (2015). Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation, Biosystems Engineering, 132, pp. 47-55. DOI:10.1016/j.biosystemseng.2015.02.007.
  38. Wu, Z., Nguyen, D., Lam, T.Y.C., Zhuang, H., Shrestha, S., Raskin, L., Khanal, S.K. & Lee, P.H. (2021). Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass, WaterResearch, 15, 190, 116721. DOI:10.1016/j.watres.2020.116721.
  39. Yang, S., Sun, X., Jiang, X., Wang, L., Tian, J., Li, L., Zhao, M. & Zhong, Q. (2019). Characterization of the Tibet plateau Jerusalem artichoke (Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis, Hereditas, 6, 156, 9. DOI:10.1186/s41065-019-0086-8.
  40. Zhang, H., Khalid, H., Li, W., He, Y., Liu, G. & Chen, C. (2018a). Employing response surface methodology (RSM) to improve methane production from cotton stalk, Environmental science and pollution research international, 25,8, pp. 7618-7624. DOI:10.1007/s11356-017-0682-y.
  41. Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G. & Chen, C. (2018b). Enhancement of methane production from Cotton Stalk using different pretreatment techniques, Scientific reports, 8, 1, 3463. DOI:10.1038/s41598-018-21413-x.
  42. Zhang, H., Wang, L., Dai, Z., Zhang, R., Chen, C. & Liu, G. (2019). Effect of organic loading, feed-to-inoculum ratio, and pretreatment on the anaerobic digestion of tobacco stalks, Bioresource Technology, 298, 122474. DOI:10.1016/j.biortech.2019.122474.
  43. Zhao, C., Cui, X., Liu, Y., Zhang, R., He, Y., Wang, W., Chen, C. & Liu, G. (2017). Maximization of the methane production from durian shell during anaerobic digestion, Bioresource Technology, 238, pp. 433-438. DOI:10.1016/j.biortech.2017.03.184.
Przejdź do artykułu

Autorzy i Afiliacje

Yan Meng
1
Yi Li
1
Laisheng Chen
1
Rui Han
1

  1. Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China

Abstrakt

Models describe our beliefs about how the world functions. In mathematical modelling, we translate those beliefs into the language of mathematics. Mathematical models can yield prognose on the base of applied fertiliser dose. In this work results of finding yield mathematical model according to fertiliser (nitrogen) dose for perennials (willowleaf sunflower Helianthus salicifolious, cup plant Silphium perfoliatum and Jerusalem artichoke Helianthus tuberosus) on marginal land are presented. Models were described as normalised square equations for dependence between yield and fertiliser doses. Experiments were conducted in lisymeters and vases for willowleaf sunflower and cup plant. For Jerusalem artichoke experiments were done in vases only. All experiments have been doing during two years (2018 and 2019) for different fertilisers doses (45, 90 and 135 kg N∙ha–1) in three repetitions. From simulations maximal yield could be achieved for following fertiliser doses – willowleaf sunflower 104 kg N∙ha–1, cup plant 85 kg N∙ha–1 and Jerusalem artichoke 126 kg N∙ha–1.
Przejdź do artykułu

Autorzy i Afiliacje

Marek Hryniewicz
1
ORCID: ORCID
Maria Strzelczyk
1
ORCID: ORCID
Marek Helis
1
ORCID: ORCID
Anna Paszkiewicz-Jasińska
1
ORCID: ORCID
Aleksandra Steinhoff-Wrzesniewska
1
ORCID: ORCID
Kamil Roman
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji