Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 69
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A simulation-based optimization approach to design of phase excitation tapers for linear phased antenna arrays is presented. The design optimization process is accelerated by means of Surrogate-Based Optimization (SBO); it uses a coarse-mesh surrogate of the array element for adjusting the array’s active reflection coefficient responses and a fast surrogate of the antenna array radiation pattern. The primary optimization objective is to minimize side-lobes in the principal plane of the radiation pattern while scanning the main beam. The optimization outcome is a set of element phase excitation tapers versus the scan angle. The design objectives are evaluated at the high fidelity level of description using simulations of the discrete electromagnetic model of the entire array so that the effects of element coupling and other possible interaction within the array structure are accounted for. At the same time, the optimization process is fast due to SBO. Performance and numerical cost of the approach are demonstrated by optimizing a 16-element linear array of microstrip antennas. Experimental verification has been carried out for a manufactured prototype of the optimized array. It demonstrates good agreement between the radiation patterns obtained from simulations and from physical measurements (the latter constructed through superposition of the measured element patterns).

Go to article

Authors and Affiliations

Sławomir Kozieł
Stanislav Ogurtsov
Adrian Bekasiewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of numerical calculations and experimental data on the directional pattern of two 38-element parametric arrays composed of ultrasound sources. Two types of antenna arrays are considered, namely with parallel and coaxial connections of ultrasonic transducers (elements). The results of selecting and functional testing of unit elements are described in this paper. It is found that in the coaxial element connection of the antenna array, the level of side lobes is higher than that in the parallel element connection.

Go to article

Authors and Affiliations

Denis S. Rakov
Aleksandr S. Rakov
Andrey N. Kudryavtsev
Nikolay P. Krasnenko
Yury A. Chursin
Maksim A. Murin
Download PDF Download RIS Download Bibtex

Abstract

The use of therapeutic ultrasound continues to grow. A focused ultrasonic wave can increase the tissue temperature locally for the non-invasive cancer treatment or other medical applications. The authors have designed a seven-element annular array transducer operating at 2.4 MHz. Each element was excited by sine burst supplied by a linear amplifier and FPGA control circuits. The acoustic field, generated by a transducer was initially numerically simulated in a computer and next compared to water tank hydrophone measurements performed at 20, 40 and 60 mm focal depth. The results showed good agreement of the measurements with theory and the possibility to focus the ultrasound in the preselected area. The total acoustic power radiated by the annular array was equal to 2.4 W.

Go to article

Authors and Affiliations

Wojciech Secomski
Marcin Lewandowski
Andrzej Nowicki
Janusz Wójcik
Mateusz Walczak
Ryszard Tymkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Mapping storm activity across the globe at time scales ranging from minutes to years is an important element of measuring and forecasting climate change. The WERA system is being used to verify models of the influence of various types of solar activity on the lower layers of the ionosphere. We hope that one day it can also be used on Mars.

Go to article

Authors and Affiliations

Andrzej Kułak
Download PDF Download RIS Download Bibtex

Abstract

The polarized electromagnetic waves have significant impact on the performance of adaptive antenna arrays. In this paper we investigate the effect of polarized desired and undesired signals on the performance of electronically steered beam adaptive antenna arrays. To achieve this goal, we built an analytical signal model for the adaptive array, in order to analyze, and compare the effect of polarized signals on the output SINRs (signal to interference plus noise ratios) of single-dipole, and cross-dipole adaptive antenna arrays. Based on a proof-of-concept experiment, and on MATLAB simulation results, it will be shown that cross-dipole adaptive antenna arrays exhibit better performance in comparison with single-dipole adaptive antenna arrays in presence of randomly polarized signals. However, single-dipole arrays show better performance under certain operating conditions.

Go to article

Authors and Affiliations

Amin H. Al Ka'bi
Download PDF Download RIS Download Bibtex

Abstract

Array jet impingement cooling is a significant technology of enhanced heat dissipation which is fit for high heat flux flow with large area. It is gradually applied to the cooling of electronic devices. However, The researches on the nozzle array mode and the uniformity of cooling surface still have deficiencies. Therefore, the influence of heat flux, inlet temperature, jet height, array mode and diversion structure on jet impingement cooling performance and temperature distribution uniformity is analyzed by means of numerical calculation. The results show that the heat transfer coefficient of jet impingement cooling increases linearly with the increment of heat flux and inlet temperature. With the increment of the ratio of jet height to nozzle diameter (H/d), the heat transfer coefficient increases first and then decreases, that is, there is an optimal H/d, which makes the heat transfer performance of the array jet impact cooling best. The temperature uniformity of array jet impact cooling is greatly affected by array mode. The improvement effect of nozzle array mode on temperature uniformity is ranked as sequential > staggered > shield > elliptical array. The overall temperature uniformity and heat transfer coefficient are increased by 5.88% and 7.29% compared with elliptical array. The heat transfer performance can be further improved by adding a flow channel to the in-line array layout, in which the heat transfer coefficient is increased by 6.53% and the overall temperature uniformity is increased by 1.45%.
Go to article

Authors and Affiliations

Nianyong Zhou
Youxin Zhou
Yingjie Zhao
Qingguo Bao
Guanghua Tang
Wenyu Lv
Download PDF Download RIS Download Bibtex

Abstract

Presented work considers flow and thermal phenomena occurring during the single minijet impingement on curved surfaces, heated with a constant heat flux, as well as the array of minijets. Numerical analyses, based on the mass, momentum and energy conservation laws, were conducted, regarding single phase and two-phase simulations. Focus was placed on the proper model construction, in which turbulence and boundary layer modeling was crucial. Calculations were done for various inlet parameters. Initial single minijet results served as the basis for the main calculations, which were conducted for two jet arrays, with flat and curved heated surfaces. Such complex geometries came from the cooling systems of electrical devices, and the geometry of cylindrical heat exchanger. The results, regarding Nusselt number, heated surface temperature, turbulence kinetic energy, production of entropy and vorticity, were presented and discussed. For assumed geometrical parameters similar results were obtained.

Go to article

Authors and Affiliations

Tomasz Kura
Elżbieta Fornalik-Wajs
Jan Wajs
Download PDF Download RIS Download Bibtex

Abstract

This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ n ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.

Go to article

Authors and Affiliations

Wiktor Staszewski
Tadeusz Gudra
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

Commercially available cardiac scanners use 64–128 elements phased-array (PA) probes and classical delay-and-sum beamforming to reconstruct a sector B-mode image. For portable and hand-held scanners, which are the fastest growing market, channel count reduction can greatly decrease the total power and cost of devices. The introduction of ultra-fast imaging methods based on plane waves and diverging waves provides new insight into heart’s moving structures and enables the implementation of new myocardial assessment and advanced flow estimation methods, thanks to much higher frame rates. The goal of this study was to show the feasibility of reducing the channel count in the diverging wave synthetic aperture image reconstruction method for phased-arrays. The application of ultra-fast 32-channel subaperture imaging combined with spatial compounding allowed the frame rate of approximately 400 fps for 120 mm visualization to be achieved with image quality obtained on par with the classical 64-channel beamformer. Specifically, it was shown that the proposed method resulted in image quality metrics (lateral resolution, contrast and contrast-to-noise ratio), for a visualization depth not exceeding 50 mm, that were comparable with the classical PA beamforming. For larger visualization depths (80–100 mm) a slight degradation of the above parameters was observed. In conclusion, diverging wave phased-array imaging with reduced number of channels is a promising technology for low-cost, energy efficient hand-held cardiac scanners.

Go to article

Authors and Affiliations

Yuriy Tasinkevych
Marcin Lewandowski
Ziemowit Klimonda
Mateusz Walczak
Download PDF Download RIS Download Bibtex

Abstract

Directional excitation of sound in an aperiodic finite baffle system is analyzed using a method developed earlier in electrostatics. The solution to the corresponding boundary value problem is obtained in the spatial-frequency domain. The acoustic pressure and normal particle velocity distribution in acoustic media can be easily computed by the inverse Fourier transform from their spatial spectra on the baffle plane. The presented method can be used for linear acoustic phased arrays modeling with finite element size and inter-element interactions taken into account. Some illustrative numerical examples presenting the far-field radiation pattern and wave-beam steering are given.

Go to article

Authors and Affiliations

Yuriy Tasinkevych
Download PDF Download RIS Download Bibtex

Abstract

In the acoustic fatigue experiment for hypersonic vehicle in simulated harsh service environment on ground, acoustic loads on the surface of test pieces of the vehicle need to be measured. However, for the normal microphones without high temperature resistance ability, the near field sound measurement cannot be achieved. In this work, on the basis of previous researches, an acoustic tubes array is designed to achieve the near field measurement of acoustic loads on the surface of the test piece in the supersonic airflow with high temperature achieved by coherent jet oxygen lance. Firstly, the process of designing this acoustic tubes array is introduced. Secondly, the equality of phase differences at the front and at the end of the tubes is stated and proved using a phase differences test with an acoustic tubes array whose design is presented in this text; therefore, the phase differences of signals acquired by microphones can be directly applied to beamforming algorithm to determine the acoustic load source. Finally, using above mentioned acoustic tubes array, measurement of acoustic load, with and without a test piece in the supersonic airflow made by the coherent jet oxygen lance, is conducted respectively, and the measurements results are analyzed.
Go to article

Authors and Affiliations

Long Wei
Min Li
Qiang Fu
Yue Fan
Debin Yang
Download PDF Download RIS Download Bibtex

Abstract

The noise of motor vehicles is one of the most important problems as regards to pollution on main roads. However, this unpleasant characteristic could be used to determine vehicle speed by external observers. Building on this idea, the present study investigates the capabilities of a microphone array system to identify the position and velocity of a vehicle travelling on a previously established route. Such linear microphone array has been formed by a reduced number of microphones working at medium frequencies as compared to industrial microphone arrays built for location purposes, and operates with a processing algorithm that ultimately identifies the noise source location and reduces the error in velocity estimation
Go to article

Authors and Affiliations

Ramón Peral-Orts
Emilio Velasco-Sánchez
Nuria Campillo-Davó
Héctor Campello-Vicente
Download PDF Download RIS Download Bibtex

Abstract

Linear arrays of ultrasonic transducers are commonly used as ultrasonic probes in medical diagnostics for imaging the interior of a human body in vivo. The crosstalk phenomenon occurs during the operation of transducers in which electrical voltages and mechanical vibrations are transmitted to adjacent components. As a result of such additional excitation of the transducers in the array, the directivity characteristics of the aperture used changes, and consequently there is interference with properoperation of a given array and the emergence of distortions in the obtained ultra sound image that reduce its quality. This paper studies the manner of propagation of mechanical crosstalk in the designed model of a linear array of ultrasonic transducers on the basis of unwanted signals, which appeared on elementary piezo-electric transducers when power is supplied to the selected transducer in the array. The universal model of linear array of ultrasonic transducers, which has been developed, allowed the simulation of mechanical crosstalk, taking in to account the cross-coupling phenomenon in all of its structure with the use of finite elements method (FEM) implemented in COMSOL Multiphysics software. The analysis of crosstalk signals showed that they consist of aggregated pulses propagating with different speeds and frequencies. This signifies the formation of different vibration modes transmitted simultaneously via different paths. The paper is an original approach which enables to identify different vibration modes and estimate their participation in the crosstalk signal and their ways of propagation. Conclusions from the research allow predicting specific design changes which are significant due to the minimization of mechanical crosstalk in linear arrays of ultrasonic transducers.

Go to article

Authors and Affiliations

Mateusz Celmer
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

Most receiving antenna arrays suffer from the mutual coupling problem between antenna elements, which can critically influence the performance of the array. In this work, a novel and accurate form of compensation matrix is applied to compensate the mutual coupling in a uniform linear array (ULA). This is achieved by applying a new method based on solving a boundary value problem for the whole ULA. In this method, both self and mutual impedances are exploited in an accurate characterization of mutual impedance matrix which results in a perfect mutual coupling compensation method, and hence a very accurate direction of arrival (DOA) estimation. In the new scheme, the compensation ma- trix is obtained by using the relationship between measured voltage and theoretical coupled voltage based on the MOM. Numerical results show that using DOA estimation algorithms to the decoupled voltage obtained by using this method leads to an excellent performance of DOA estimation with higher accuracy and resolution.
Go to article

Authors and Affiliations

Naser Parhizgar
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new modified method for the synthesis of non-uniform linear antenna arrays. Based on the recently developed invasive weeds optimization technique (IWO), the modified invasive weeds optimization method (MIWO) uses the mutation process for the calculation of standard deviation (SD). Since the good choice of SD is particularly important in such algorithm, MIWO uses new values of this parameter to optimize the spacing between the array elements, which can improve the overall efficiency of the classical IWO method in terms of side lobe level (SLL) suppression and nulls control. Numerical examples are presented and compared to the existing array designs found in the literature, such as ant colony optimization (ACO), particle swarm optimization (PSO), and comprehensive learning PSO (CLPSO). Results show that MIWO method can be a good alternative in the design of non-uniform linear antenna array.
Go to article

Authors and Affiliations

El Hadi Kenane
Farid Djahli
Download PDF Download RIS Download Bibtex

Abstract

A pulse sequence shaper for the pursuance of the research using a wide spectrum of radiospectroscopy and relaxation methods in NQR is proposed. The distinctive feature of this product is its implementation with the application of a multi-functional programmable frequency synthesizer suitable for high-speed amplitude and phase manipulations.
Go to article

Authors and Affiliations

Yuriy Bobalo
Zenon Hotra
Oleksandra Hotra
Leonid Politans’kyy
Andriy Samila
Download PDF Download RIS Download Bibtex

Abstract

The goal of this article is non-destructive ultrasonic testing of internal castings defects. Our task was to cast several samples with defects like porosity and cavities (where belongs mostly shrinkages) and then pass these samples under ultrasonic testing. The characteristics of ultrasonic control of castings are presented in the theoretical part of this article. Ultrasonic control is a volume non-destructive method that can detect internal defects in controlled materials without damaging the construction. It is one of the most widely used methods of volume non-destructive testing. For experimental control were made several cylindrical samples from ferritic grey and ductile cast iron. Because of the form and dispersion of graphite of grey cast iron it was not possible to make ultrasonic records on this casting with probe we used, so we worked only with ductile cast iron. Ultrasonic records of casting control are shown and described in the experimental part. The evaluation of the measurement results and the reliability of the ultrasonic method in castings control is listed at the end of this article.

Go to article

Authors and Affiliations

M. Boháčik
M. Mičian
R. Koňár
L. Trško
J. Winczek
Download PDF Download RIS Download Bibtex

Abstract

Modern infrared cameras are constructed with two main types of infrared detectors: photon detectors and thermal detectors. Because of economic reasons, vast numbers of modern thermal cameras are constructed with the use of infrared microbolometric detectors which belong to the group of thermal detectors. Thermal detectors detect incident infrared radiation by measuring changes of temperature on the surface of a special micro-bridge structure. Thermal detectors, like microbolometric detectors on one hand should be sensitive to changing temperature to accurately measure incoming infrared radiation from the observed scene, on the other hand there are many other phenomena that change the temperature of the detector and influence the overall response of the detector. In order to construct an accurate infrared camera, there is a need to evaluate these phenomena and quantify their influence. In the article the phenomenon of self heating due to the operation of the readout circuit is analyzed on an UL 03 19 1 detector. The theoretical analysis is compared with the results of conducted measurements. Measurements with a type SC7900VL thermographic camera were performed to measure the thermodynamic behavior of the UL 03 19 1 detector array.

Go to article

Authors and Affiliations

Grzegorz Bieszczad
Mariusz Kastek
Download PDF Download RIS Download Bibtex

Abstract

The article presents measurement results of prototype integrated circuits for acquisition and processing of images in real time. In order to verify a new concept of circuit solutions of analogue image processors, experimental integrated circuits were fabricated. The integrated circuits, designed in a standard 0.35 μm CMOS technology, contain the image sensor and analogue processors that perform low-level convolution-based image processing algorithms. The prototype with a resolution of 32 × 32 pixels allows the acquisition and processing of images at high speed, up to 2000 frames/s. Operation of the prototypes was verified in practice using the developed software and a measurement system based on a FPGA platform.

Go to article

Authors and Affiliations

Waldemar Jendernalik
Jacek Jakusz
Grzegorz Blakiewicz
Stanisław Szczepański
Robert Piotrowski
Download PDF Download RIS Download Bibtex

Abstract

Microphone array with minimum variance (MVDR) beamformer is a commonly used method for ambient noise suppression. Unfortunately, the performance of the MVDR beamformer is poor in a real reverberant room due to multipath wave propagation. To overcome this problem, we propose three improvements. Firstly, we propose end-fire microphone array that has been shown to have a better directivity index than the corresponding broadside microphone array. Secondly, we propose the use of unidirectional microphones instead of omnidirectional ones. Thirdly, we propose an adaptation of its adaptive algorithm during the pause of speech, which improves its robustness against the room reverberation and deviation from the optimal receiving direction. The performance of the proposed microphone array was theoretically analyzed using a diffuse noise model. Simulation analysis was performed for combined diffuse and coherent noise using the image model of the reverberant room. Real room tests were conducted using a four-microphone array placed in a small office room. The theoretical analysis and the real room tests showed that the proposed solution considerably improves speech quality.
Go to article

Authors and Affiliations

Zoran Šarić
1
ORCID: ORCID
Miško Subotić
1
Ružica Bilibajkić
1
Marko Barjaktarović
2
Nebojša Zdravković
3

  1. Laboratory of Acoustics, Life Activities Advancement Center, Serbia
  2. Faculty of Electrical Engineering, University of Belgrade, Serbia
  3. Faculty of Medical Sciences, University of Kragujevac, Serbia
Download PDF Download RIS Download Bibtex

Abstract

The abundant use of solar energy in Indonesia has the potential to become electrical energy in a microgrid system. Currently the use of renewable energy sources (RESs) in Indonesia is increasing in line with the reduction of fossil fuels. This paper proposes a new microgrid DC configuration and designs a centralized control strategy to manage the power flow from renewable energy sources and the load side. The proposed design uses three PV arrays (300 Wp PV module) with a multi-battery storage system (MBSS), storage (200 Ah battery). Centralized control in the study used an outseal programmable logic controller (PLC). In this study, the load on the microgrid is twenty housing, so that the use of electrical energy for one day is 146.360 Wh. It is estimated that in one month it takes 4.390.800 Wh of electrical energy. The new DC microgrid configuration uses a hybrid configuration, namely the DC coupling and AC coupling configurations.The results of the study show that the DC microgrid hybrid configuration with centralized control is able to alternately regulate the energy flow from the PV array and MBSS. The proposed system has an efficiency of 98% higher than the previous DC microgrid control strategy and configuration models.
Go to article

Authors and Affiliations

Adhi Kusmantoro
1
Irna Farikhah
2

  1. Department of Electrical Engineering, Universitas PGRI Semarang Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
  2. Department of Mechanical Engineering, Universitas PGRI Semarang, Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

One of the least expensive and safest diagnostic modalities routinely used is ultrasound imaging. An attractive development in this field is a two-dimensional (2D) matrix probe with three-dimensional (3D) imaging. The main problems to implement this probe come from a large number of elements they need to use. When the number of elements is reduced the side lobes arising from the transducer change along with the grating lobes that are linked to the periodic disposition of the elements. The grating lobes are reduced by placing the elements without any consideration of the grid. In this study, the Binary Bat Algorithm (BBA) is used to optimize the number of active elements in order to lower the side lobe level. The results are compared to other optimization methods to validate the proposed algorithm.

Go to article

Authors and Affiliations

Dina Mohamed Tantawy
Mohamed Eladawy
Mohamed Alimaher Hassan
Roaa Mubarak
Download PDF Download RIS Download Bibtex

Abstract

In today’s fast-paced world, where everyone/everything is moving towards an online platform, the need to provide high-speed data to all is inevitable. Hence, introducing the emerging 5G technology with orthogonal frequency division multiplexing integrated with massive MIMO technology is the need of the hour. A 640 port Massive MIMO (m- MIMO) antenna with high evenly spread gain and very low delay, along with a practically possible data rate operating in the mm waveband, is proposed for a 5G base station. The individual antenna element consists of a dipole (λ=0.5cm) designed to operate at 57GHz. Placing the cylindrical MIMO antenna array (8x20) facing the four directions forming the m-MIMO antenna (160x4) at the height of 3m from ground level for simulation. Achievement of a maximum gain of 23.14dBi (θ=90▫) and a minimum data rate of 1.44Gbps with -10dB bandwidth of 2.1GHz (256-QAM) approximately a distance of 478m from the 5G Base station. The m-MIMO structure gives an Envelope Correlation Coefficient of 0.015. The propagation analysis is carried out to substantiate the performance of the proposed system based on field strength and received power. Network Analysis for better reception performance is carried out by changing the antenna height placement, altering the down tilt of the antenna array, and sweeping the polarization angle of the antenna array.
Go to article

Authors and Affiliations

Samuelraj Chrysolite
1
Anita Jones Mary Pushpa
1

  1. Karunya University, India

This page uses 'cookies'. Learn more