Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In recent years, scattered light measurement technology has developed into a common method for measuring roughness, form and waviness on precision machined surfaces. Meanwhile, the application for the material structure evaluation of electrolytically anodized surfaces has also been considered. In this context,we present a novel approach to layer thickness measurement of naturally anodised aluminium surfaces. Our approach is based on the reflection intensity of the light beam, which penetrates the oxide layer and is reflected back from the surface as well as from the layer base. In the approach, a model for estimating reflection intensity I from the absorption coefficient is employed. The methodology is tested by comparing results to a layer thickness evaluation using metallographic preparation. Based on the proposed approach, we are able to measure intervals of layer thicknesses on naturally anodized aluminium surfaces without contact.
Go to article

Authors and Affiliations

Tobias Geisler
1
Martin Manns
1

  1. Universität Siegen, Fakultät IV, Lehrstuhl für Fertigungsautomatisierung und Montage, PROTECH-Institut für Produktionstechnik, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
Download PDF Download RIS Download Bibtex

Abstract

Plasma oxidation, similarly to anodic oxidation (anodizing), are classified as electrochemical surface treatment of metals such as Al, Mg, Ti and their alloys. This type of treatment is used to make surface of castings, plastically processed products, shaped with incremental methods to suitable for certain requirements. The most important role of the micro plasma coating is to protect the metal surface against corrosion. It is well known that coating of aluminium alloys containing silicon using anodic oxidation causes significant difficulties. They are linked to the eutectic nature of this alloy and result in a lack of coverage in silicon-related areas. The coating structure in these areas is discontinuous. In order to eliminate this phenomenon, it is required to apply oxidation coatings using the PEO (Plasma Electrolytic Oxidation) method. It allows a consistent, crystalline coating to be formed. This study presents the mechanical properties of the coatings applied to Al-Si alloy using the PEO method. As part of the testing, the coating thickness, microhardness and scratch resistance were determined. On the basis of the results obtained, it was concluded that the thickness of the coatings complies with the requirements of conventional anodizing. Additionally, microhardness values exceeded the results obtained with standard methods.
Go to article

Bibliography

[1] Famiyeh, L. & Huang, H. (2019). Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Modern Concepts in Material Science. 2(1), 1-13. DOI: 10.33552/MCMS.2019.02.000526.
[2] Sieber, M., Simchen, F., Morgenstern, R., Scharf, I. & Lampke, T. (2018). Plasma electrolytic oxidation of high-strength aluminium alloys-substrate effect on wear and corrosion performance. Metals. 8(5), 356. DOI: 10.3390/met8050356.
[3] Matykina, E., Arrabal, R., Mohedano, M., Mingo, B., Gonzalez, J., Pardo, A. & Merino, M.C. (2017). Recent advances in energy efficient PEO processing of aluminium alloys. Transactions of Nonferrous Metals Society of China. 27(7) 1439-1454. DOI: 10.1016/S1003-6326(17)60166-3.
[4] Agureev, L., Savushkina, S., Ashmarin, A., Borisov, A., Apelfeld, A., Anikin, K., Tkachenko, N., Gerasimov, M., Shcherbakov, A., Ignatenko, V. & Bogdashkina, N. (2018). Study of plasma electrolytic oxidation coatings on aluminum composites. Metals. 8(6), 459. DOI: 10.3390/met8060459.
[5] Lakshmikanthan, A., Bontha, S., Krishna, M., Praveennath, G.K. & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds. 786, 570-580. DOI: 10.1016/j.jallcom.2019.01.382.
[6] Lakshmikanthan, A., Prabhu, T.R., Babu, U.S., Koppad, P.G., Gupta, M., Krishna, M. & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), 6434-6452. DOI: 10.1016/j.jmrt.2020.04.027.
[7] Rogov, A., Lyu, H., Matthews, A. & Yerokhin, A. (2020). AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surface and Coatings Technology, 399, 126116. DOI: 10.1016/j.surfcoat.2020.126116.
[8] Li, K., Li, W., Zhang, G., Zhu, W., Zheng, F., Zhang, D. & Wang, M. (2019). Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. Journal of Alloys and Compounds. 790, 650-656. DOI: 10.1016/j.jallcom.2019.03.217.
[9] Gencer, Y., Tarakci, M., Gule, A.E. & Oter C.Z. (2014). Plasma Electrolytic Oxidation of Binary Al-Sn Alloys. Acta Physica Polonica A. 125(2), 659-663. DOI: 10.12693/APhysPolA.125.659.
[10] Moszczyński, P. & Trzaska, M. (2011). Shaping of oxide layers on the aluminum surface by plasma electrochemical oxidation. Elektronika: konstrukcje, technologie, zastosowania. 52(12), 96-99. (in Polish).
[11] He, J., Cai, Q.Z., Luo, H.H., Yu, L. & Wei, B.K. (2009). Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. Journal of Alloys and Compounds. 471(1-2), 395-399. DOI: 10.1016/ j.jallcom.2008.03.114.
[12] Blawert, C., Karpushenkov, S.A., Serdechnovaa, M., Karpushenkava, L.S. & Zheludkevicha, M.L. (2020). Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Applied Surface Science. 505, 144552, DOI: 10.1016/j.apsusc.2019.144552.
[13] Dehnavi, V. (2014). Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation. A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy The School of Graduate and Postdoctoral Studies, The University of Western Ontario London, Ontario, Canada.
[14] Zhang, Y., Xu, H., Yang, Y. (2007). Study on the optimization of pulse frequency in the micro arc oxidation of aluminum alloys. Proceedings of Vacuum Metallurgy and Surface Engineering. Beijing: Electronics Industry Press. 33−40.
[15] Habazaki, H., Onodera, T., Fushimi, K., Konno, H. & Toyotake, K. (2007). Spark anodizing of β-Ti alloy for wear resistant coating. Surface and Coatings Technology. 201(21), 8730-8737. DOI: 10.1016/j.surfcoat.2006.05.041.
[16] Kurze, P., Krysmann, W. & Schneider, H.G. (2006). Application fields of ANOF layers and composites. Crystal Research and Technology. 21(12), 1603-1609. DOI: 10.1002/crat.2170211224.
[17] Butyagin, P.I., Khorkhryakov, Y.V. & Mamaev, A.I. (2003). Microplasma systems for creating coatings on aluminium alloys. Materials Letters. 57(11), 1748-1751. DOI: 10.1016/S0167-577X(02)01062-5.
[18] Sonova, A.I. & Terleeva, O.P. (2008). Morphology, structure, and phase composition of microplasma coatings formed on Al−Cu−Mg alloy. Protection of Metals. 44(1), 65-75. DOI: 10.1134/S0033173208010098.
[19] Shihai, C., Jiunmin, H., Weijing, L., Suk-Bong, K. & Jung-Moo, L. (2006). Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy. Rare Metals. 25(6), 141-145. DOI: 10.1016/S1001-0521(08)60069-8.
[20] Dai, L., Li, W., Zhang, G., Fu, N. & Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. In IOP Conf. Series: Materials Science and Engineering, 19–21 November 2016 (167, 012063), Sanya, China: IOP Publishing Ltd. DOI: 10.1088/1757-899X/167/1/012063.
[21] Li, Q.B., Liu, C.C., Yang, W.B. & Liang, J. (2017). Growth mechanism and adhesion of PEO coatings on 2024Al alloy. Surface Engineering. 33(10), 760-766. DOI: 10.1080/02670844.2016.1200860.
[22] Ayday, A. & Durman, M. (2015). Growth characteristics of plasma electrolytic oxidation coatings on aluminum alloys. Acta Physica Polonica A. 127(4), 886-887, DOI: 10.12693/APhysPolA.127.886.
[23] Dehnavi, V., Shoesmith, D.W., Luan, B.L., Yari, M. & Liu, X.Y. & Rohani, S. (2015). Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage. Materials Chemistry and Physics. 161, 49-58. DOI: 10.1016/j.matechemphys.2015.04.058.
[24] Gębarowski, W. & Pietrzyk, S. (2012). Plasma electrolytic oxidation of aluminum process technology outline. Rudy i Metale Nieżelazne. 57(4), 237-242. (in Polish).
[25] Duanjie, L. (2014). Scratch hardness measurement using mechanical tester. Retrieved February 12, 2020, from http://nanovea.com/app-notes/scratch-hardness-measurement.pl
[26] Hussein, R.O. & Northwood, D.O. (2014). Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). In Mahmood Aliofkhazraei (Eds.), Developments in Corrosion Protection (pp. 201-238). London, UK: IntechOpen Limited. DOI: 10.5772/57171.
[27] Wredenberg, F. & Larsson, P.-L. (2009). Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1-2), 76-83. DOI: 10.1016/j.wear.2008.05.014.
[28] Hussein, R.O., Northwood, D.O. & Nie, X. (2012). The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds. 541, 41-48, DOI: 10.1016/j.jallcom.2012.07.003.
[29] Matykina, E., Arrabal, R., Skeldon, P. & Thompson, G.E. (2009). Investigation of the growth processes of coatings by AC plasma electrolytic oxidation of aluminum. Electrochimica Acta. 54(27), 6767-6778.
[30] Sharift, H., Aliofkhazraei, M. & Darband, G.B. (2018). A review on adhesion strength of PEO coatings by scratch test method. Surface Review and Letters. 25(3), 1830004. DOI: 10.1142/S0218625X18300046.
Go to article

Authors and Affiliations

P. Długosz
1
ORCID: ORCID
A. Garbacz-Klempka
2
ORCID: ORCID
J. Piwowońska
1
P. Darłak
3
ORCID: ORCID
M. Młynarczyk
3

  1. Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str. 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland
  3. AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to test currently available on the market products for sealing anodic oxide coatings as well as to test the use of other alternative substances improving the sealing process. The ability to seal in 10 different solutions and the quality of the seal has been tested. The influence of the applied preparations on corrosion resistance and resistance to strongly alkaline environment was also investigated.

Based on the results obtained, satisfactory results were archived for the sample sealed in a IMN-OML (Institute of Non-Ferrous Metals in Gliwice, Light Metals Division) solution sealant and in solution of nickel acetate in a medium-temperature process. Sealing by means of nickel acetate solutions is economically justified, and its use allows the process temperature to be lowered. When it comes to resistance to alkalis, samples sealed in IMN-OML sealant are the best. Commercial solutions have also achieved positive results in all tests.

Go to article

Authors and Affiliations

A. Kozik
M. Nowak
K. Gędłek
D. Leśniak
J. Zasadziński
H. Jurczak
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is the only beneficial impurity for copper electrorefining through inhibiting anode passivation and the formation of floating slimes. The behaviour of copper anodes with different content of arsenic were studied at high current density (>280 A/m 2). It showed that low arsenic anodes (As < 300 ppm) easily generated anode passivation, floating slimes and cathode nodules during the electrorefining proccess. The floating slimes, electrolyte, cathode and anode were observed and analyzed. As result, low arsenic anodes were more likely to be passivated due to their microstructure defects and irregular microstructure. Increasing electrolyte temperature and addition of glycerol were propitious to reduce low arsenic anodes’ passivation. The floating slimes occured when the concentration of As(III) in electrolyte decreased to 1 g/L, and they would be precipitated by polyacrylamide. All measures greatly improved the cathode quality at current density of 300 A/m 2.
Go to article

Authors and Affiliations

Xuyong Zhang
1
ORCID: ORCID
Silei Chen
1
ORCID: ORCID
Lu Li
1
ORCID: ORCID
Peng Yang
1
ORCID: ORCID

  1. Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China
Download PDF Download RIS Download Bibtex

Abstract

The presented research shows that commercially available graphene on quartz modified with rhenium oxide meets the requirements for its use as a conductive and transparent anode in optoelectronic devices. The cluster growth of rhenium oxide enables an increase in the work function of graphene by 1.3 eV up to 5.2 eV, which guarantees an appropriate adjustment to the energy levels of organic semiconductors used in organic light-emitting diode devices.
Go to article

Bibliography

  1. Zou, S. J. et al. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Chem. Front. 4, 788–820 (2020). https://doi.org/10.1039/c9qm00716d
  2. Hou, S. et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Chem. 10, 864186 (2022). https://doi.org/10.3389/fchem.2022.864186
  3. Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. . Tuning the work function of graphene toward application as anode and cathode. Alloys Compd. 805, 1117–1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187
  4. Adetayo, A. E., Ahmed, T. N., Zakhidov, A. & Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Opt. Mat. 9, 2002102 (2021). https://doi.org/10.1002/adom.202002102
  5. Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Eng. Mat. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955
  6. Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380
  7. Meyer, J. et al. Transition metal oxides for organic electronics: Energetics, device physics and applications. Mat. 24, 5408–5427 (2012). https://doi.org/10.1002/adma.201201630
  8. Kowalczyk, D. A. et al. Local electronic structure of stable mono-layers of α-MoO3−x grown on graphite substrate. 2D Mat. 8, 025005 (2021). https://doi.org/10.1088/2053-1583/abcf10
  9. Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117–120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26
  10. Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces. 14, 44506–44515 (2022). https://doi.org/10.1021/acsami.2c09946
  11. Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
  12. Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033
  13. Momeni Pakdehi, D. et al. Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl. Mater. Interfaces. 10, 6039–6045 (2018). https://doi.org/10.1021/acsami.7b18641
  14. Miao, Y. et al. Small-size graphene oxide (GO) as a hole injection layer for high-performance green phosphorescent organic light-emitting diodes. Mater. Chem. C 9, 12408–12419 (2021). https://doi.org/10.1039/d1tc02898g
  15. Chen, Y., Gong, X. L. & Gai, J. G. Progress and challenges in transfer of large-area graphene films. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
  16. Fisichella, G. et al. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Beilstein Nanotechnol. 4, 234–242 (2013). https://doi.org/10.3762/bjnano.4.24
  17. Huet, B. & Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 10, 21898–21909 (2018). https://doi.org/10.1039/c8nr06817h
  18. Zheng, F. et al. Critical stable length in wrinkles of two-dimensional materials. ACS Nano 14, 2137–2144 (2020). https://doi.org/10.1021/acsnano.9b08928
  19. Venables, J. A. Atomic processes in crystal growth. Sci. 299300, 798–817 (1994). https://doi.org/10.1016/0039-6028(94)90698-X
  20. Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Phys. Chem. 228, 521–541 (2014). https://doi.org/10.1515/zpch-2014-0002
Go to article

Authors and Affiliations

Paweł Krukowski
1
ORCID: ORCID
Michał Piskorski
1
ORCID: ORCID
Ruslana Udovytska
2
ORCID: ORCID
Dorota A. Kowalczyk
1
ORCID: ORCID
Iaroslav Lutsyk
1
ORCID: ORCID
Maciej Rogala
1
ORCID: ORCID
Paweł Dąbrowski
1
ORCID: ORCID
Witold Kozłowski
1
ORCID: ORCID
Beata Łuszczyńska
2
ORCID: ORCID
Jarosław Jung
2
ORCID: ORCID
Jacek Ulański
2
ORCID: ORCID
Krzysztof Matuszek
2
ORCID: ORCID
Aleksandra Nadolska
1
ORCID: ORCID
Przemysław Przybysz
1
ORCID: ORCID
Wojciech Ryś
1
ORCID: ORCID
Klaudia Toczek
1
ORCID: ORCID
Rafał Dunal
1
ORCID: ORCID
Patryk Krempiński
1
ORCID: ORCID
Justyna Czerwińska
1
ORCID: ORCID
Maxime Le Ster
1
ORCID: ORCID
Marcin Skulimowski
3
ORCID: ORCID
Paweł J. Kowalczyk
1
ORCID: ORCID

  1. Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland
  2. Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland
  3. Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, 149/152 Pomorska St., 90–236 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Humic substances (HS) are hydrophobic parts of dissolved organic matter, which are hard to degrade using biological processes. When exposed to disinfection processes, the HS present in wastewater could lead to the formation of disinfection by-products (DBPs), which are harmful and dangerous to health. Thus, a chemical coagulation process is commonly used for HS removal. This work used a cylindrical galvanic cell (CGC) with an iron anode and a copper cathode, where the dissolution of the anode served as an alternative source of metal ions for HS coagulation. The galvanic cell current for CGC stabilized at around 0.6 mA, and the voltage fluctuated, ca. 0.5 V for all solutions. The peaks observed on cyclic voltammograms could be associated only with oxidation and dissolution of iron; no other process was identified. After the process, the structures and molecular composition of the anode surface suggest the loss of Fe mass and the formation of iron oxides due to corrosion. The initial pH of the tested solution influenced the total Fe concentration in the solution as well as colour and turbidity. The quantitative removal of HS by electrolysis and membrane filtration processes at initial pHi = 6.0 yielded 72% and 90%, respectively, after 6 and 10 min. The mechanism of sorption on the flocs of hydroxides as a primary factor in HA removal was suggested.
Go to article

Authors and Affiliations

Bartosz Libecki
1
ORCID: ORCID
Tomasz Mikołajczyk
1
ORCID: ORCID
Bogusław Pierożyński
1
ORCID: ORCID
Mateusz Kuczyński
1
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Departmentof Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to estimate the content of trace elements: zinc, cadmium, lead, molybdenum and nickel in products and wastes of coal treatment from Upper-Silesian Basin. Two analytical methods were applied: atomic absorption spectrometry (FAAS, ETAAS) and anodic (ASY) and adsorptive stripping voltammetry (AdSY). ASY is used to determine zinc, cadmium and lead; AdSY molybdenum and nickel, and FAAS and ETAAS to determine all elements. In the case of Zn, Ni, Mo, Pb and Cd determined by FAAS (ETAAS) the concentrations were practically the same as those obtained by ASY or AdSY.
Go to article

Authors and Affiliations

Krystyna Srogi
Mariusz Minkina
Download PDF Download RIS Download Bibtex

Abstract

A deep eutectic solvent, ethaline (as a typical representative of new-generation room temperature ionic liquids), was used to anodically treat the surface of copper-nickel alloy (55 wt.% Cu). Anodic treatment in ethaline allows flexibly affecting the patterns of surface morphology: formation of stellated crystallites and surface smoothing (i.e. electropolishing) are observed depending on the applied electrode potential. The measured values of roughness coefficient ( Ra ) well correlate with the changes in surface morphology. Anodic treatment of Cu-Ni alloy in ethaline contributes to a considerable increase in the electrocatalytic activity towards the hydrogen evolution reaction in an alkaline aqueous medium, which can be used to develop new high-efficient and inexpensive electrocatalysts within the framework of the concept of carbon-free hydrogen economy.
Go to article

Authors and Affiliations

V. Protsenko
1
ORCID: ORCID
T. Butyrina
1
ORCID: ORCID
D. Makhota
1
ORCID: ORCID
S. Korniy
1 2
ORCID: ORCID
F. Danilov
1
ORCID: ORCID

  1. Ukrainian State University of Chemical Technology, Department of Physical Chemistry, Gagarin Ave., 8, Dnipro, 49005, Ukraine
  2. Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Naukova St. 5, Lviv, 79060, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study on anodizing titanium alloy Ti-6Al-7Nb in electrolyte of dilute sulfuric acid. The effects of the parameters – voltage, anodizing time, and electrode distance on the anodic film properties have been investigated. The anodic layers are found to become more compact with the increase of the applied voltage in the electrolytic cell. The microstructure, chemical element distribution and mechanical properties, i.e. microroughness and microhardness of the anodic coatings obtained at different operating conditions have been evaluated.

Go to article

Authors and Affiliations

Deyan Veselinov
Hristo Skulev
Download PDF Download RIS Download Bibtex

Abstract

In zinc electrowinning, small amounts of manganese ions additives are needed in the electrolyte to reduce the corrosion of anodes and minimize the contamination of cathodic zinc by dissolved lead. However, excess manganese oxide could cover the dimensionally stable anodes (DSA) surface and decrease their service life. Additives of phosphoric acid are put in the electrolyte to complex the manganic Mn3+ ion and hence reduce its disproportionation to MnO2. In the investigation, phosphoric acid was added to sulfuric acid or zinc electrolytes, and conventional and recent electrochemical measurements were carried out to examine electrochemical behaviour of DSA (Ti/IrO2-Ta2O5) anode during zinc electrolysis at 48 mA/cm2 and 39°C. It was observed that the anodic potentials of DSA anodes were lower by 27 mV after 5 h polarization in the zinc electrolyte containing 35 g/L phosphoric acid at 39°C. Electrochemical impedance measurements show that the addition of 35 ml/L H3PO4 to the zinc electrolyte can increase impedance resistances of the DSA mesh anodes. Cyclic voltammogram studies (CV) at a scan rate of 5 mV/s without agitation show that the oxidation peak in the solution with 35 ml/L phosphoric acid addition is highest, followed by that with 17 ml/L phosphoric acid addition and that without addition of phosphoric acid.
Go to article

Authors and Affiliations

Wei Zhang
1 2
ORCID: ORCID
Georges Houlachi
3
ORCID: ORCID
Sanae Haskouri
2
ORCID: ORCID
Edward Ghali
2
ORCID: ORCID

  1. Hunan University of Technology, School of Metallurgical, ZhuZhou, China, 412002
  2. Laval University, Department of Mining, Metallurgical and Materials Engineering, Quebec, QC, Canada, G1K 7P4
  3. Hydro-Québec research institute, Shawinigan, QC, Canada, G9N 7N5
Download PDF Download RIS Download Bibtex

Abstract

In this study, cobalt oxide (Co3O4) powder was prepared by simple precipitation and heat-treatment process of cobalt sulfate that is recovered from waste lithium-ion batteries (LIBs), and the effect of heat-treatment on surface properties of as-synthesized Co(OH)2 powder was systematically investigated. With different heat-treatment conditions, a phase of Co(OH)2 is transformed into CoOOH and Co3O4. The result showed that the porous and large BET surface area (ca. 116 m2/g) of Co3O4 powder was prepared at 200°C for 12 h. In addition, the lithium electroactivity of Co3O4 powder was investigated. When evaluated as an anode material for LIB, it exhibited good electrochemical performance with a specific capacity of about 500 mAh g–1 at a current density of C/5 after 50 cycles, which indicates better than those of commercial graphite anode material.
Go to article

Authors and Affiliations

Hyun-Woo Shim
1
ORCID: ORCID
Byoungyong Im
2 3
ORCID: ORCID
Soyeong Joo
2
ORCID: ORCID
Dae-Guen Kim
ORCID: ORCID

  1. Resources Utilization Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)
  2. Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE ), 51 Goan Rd., Baegam-myeon, Yongin-si, Gyeonggi 17180, Yongin, Republic of Korea
  3. Sejong University, Depart ment of Nanotechnology and Advanced Materials Engineering, Seoul, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Sodium-ion batteries (SIBs) have attracted substantial interest as an alternative to lithium-ion batteries because of the low cost. There have been many studies on the development of new anode materials that could react with sodium by conversion mechanism. SnO2 is a promising candidate due to its low cost and high theoretical capacity. However, SnO2 has the same problem as other anodes during the conversion reaction, i.e., the volume of the anode repeatedly expands and contracts by cycling. Herein, anode is composed of carbon nanofiber embedded with SnO2 nanopowder. The resultant electrode showed improvement of cyclability. The optimized SnO2 electrode showed high capacity of 1275 mAh g–1 at a current density of 50 mA g–1. The high conductivity of the optimized electrode resulted in superior electrochemical performance.
Go to article

Bibliography

[1] L. Yue, H. Zhao, Z. Wu, J. Liang, S. Lu, G. Chen, S. Gao, B. Zhong, X. Guo, X. Sun, J. Mater. Chem. A. 8 (23), 11493-11510 (2020).
[2] K. Mishra, N. Yadav, S. Hashmi, J. Mater. Chem. A. 8 (43), 22507- 22543 (2020).
[3] M .K. Sadan, A.K. Haridas, H. Kim, C. Kim, G.-B. Cho, K.-K. Cho, J.-H. Ahn, H.-J. Ahn, Nanoscale Advances. 2 (11), 5166-5170 (2020).
[4] M .K. Sadan, H. Kim, C. Kim, S. Cha, K.-K. Cho, K.-W. Kim, J .-H. Ahn, H.-J. Ahn, J. Mater. Chem. A. 8 (19), 9843-9849 (2020).
[5] Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, J. Power Sources. 293, 626-634 (2015).
[6] H. Kim, M.K. Sadan, C. Kim, S.-H. Choe, K.-K. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Mater. Chem. A. 7 (27), 16239-16248 (2019).
[7] H. Kim, S.-W. Lee, K.-Y. Lee, J.-W. Park, H.-S. Ryu, K.-K. Cho, G.-B. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Nanosci. Nanotechnol. 18 (9), 6422-6426 (2018).
[8] H. Ye, L. Wang, S. Deng, X. Zeng, K. Nie, P.N. Duchesne, B. Wang, S. Liu, J. Zhou, F. Zhao, N. Han, P. Zhang, J. Zhong, X. Sun, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 7 (5), 1601602 (2016).
[9] C. Kim, I. Kim, H. Kim, M.K. Sadan, H. Yeo, G. Cho, J. Ahn, J. Ahn, H. Ahn, J. Mater. Chem. A. 6 (45), 22809-22818 (2018).
[10] M .K. Sadan, S.-H. Choi, H. Kim, C. Kim, G.-B. Cho, K.-W. Kim, N.S, Reddy, J.-H. Ahn, H.-J. Ahn, Ionics. 24, 753-761 (2018).
[11] D . Su, S. Dou, G. Wang, Nano Energy. 12, 88-95 (2015).
[12] D . Narsimulu, G. Nagaraju, S.C. Sekhar, B. Ramulu, J.S. Yu, Appl. Surf. Sci. 538, 148033 (2021).
[13] L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren, T. Wu, P. Zuo, G. Yin, J. Wang, Nano Energy. 43, 184-191 (2018).
[14] S. Zhang, L. Yue, M. Wang, Y. Feng, Z. Li, J. Mi, Solid State Ion. 323, 105-111 (2018).
[15] X. Lu, F. Luo, Q. Xiong, H. Chi, H. Qin, Z. Ji, L. Tong, H. Pan, Mater. Res. Bull. 99, 45-51 (2018).
[16] Y.-N. Sun, M. Goktas, L. Zhao, P. Adelhelm, B.-H. Han, J. Colloid Interface Sci. 572, 122-132 (2020).
[17] A.K. Haridas, J. Heo, X. Li, H.-J. Ahn, X. Zhao, Z. Deng, M. Agostini, A. Matic, J.-H. Ahn, Chem. Eng. J. 385, 123453 (2020).
[18] M . K.Sadan, H. Kim, C. Kim, G.-B. Cho, N.S. Reddy, K.-K. Cho, T.-H. Nam, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Nanosci. Nanotechnol. 20 (11), 7119-7123 (2020).
[19] S. Men, H. Zheng, D. Ma, X. Huang, X. Kang, J. Energy Chem. 54, 124-130 (2021).
[20] H. Xie, Z. Wu, Z. Wang, N. Qin, Y. Li, Y. Cao, Z. Lu, J. Mater. Chem. A. 8 (7), 3606-3612 (2020).
[21] G . Cha, S. Mohajernia, N.T. Nguyen, A. Mazare, N. Denisov, I. Hwang, P. Schmuki, Adv. Energy Mater. 10 (6), 1903448 (2020).
[22] Y.C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y.S. Meng, S. Okada, J. Power Sources. 204, 287-295 (2015).
[23] A.-T. Chien, S. Cho, Y. Joshi, S. Kumar, Polymer. 55 (26), 6896- 6905 (2014).
Go to article

Authors and Affiliations

Huihun Kim
1
ORCID: ORCID
Milan K. Sadan
1
ORCID: ORCID
Changhyeon Kim
1
ORCID: ORCID
Ga-In Choi
2
ORCID: ORCID
Minjun Seong
2
ORCID: ORCID
Kwon-Koo Cho
2
ORCID: ORCID
Ki-Won Kim
2
ORCID: ORCID
Jou-Hyeon Ahn
2
ORCID: ORCID
Hyo-Jun Ahn
1
ORCID: ORCID

  1. Gyeongsang National University, Research Institute for Green Energy Convergence Technology, Jinju, 52828, Republic of Korea
  2. Gyeongsang National University, Department of Materials Engineering and Convergence Technology, RIGET, Jinju, 52828, Republic of Korea

This page uses 'cookies'. Learn more