Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper attempts to relate the parameters obtained from CPTu static sounding and DPH dynamic test conducted in non-cohesive alluvial deposits of the Vistula River. The investigation was carried out in eight test stations located on the left bank of the Vistula River in Warsaw. The presented theses were based on the results of static CPTU and dynamic DPH tests obtained at 8 test stations. Additionally, in order to associate the obtained sounding results to the lithological type of the tested medium, drillings and grain size analyses were performed. The correlation of the different test methods stems from the need to identify and explain observed discrepancies against the background of different geological conditions, such as moisture content or grain size distribution. The comparative analysis of the parameters obtained from static and dynamic probing, is relevant to the alluvial sediments formed the lower over-flood terrace (called “the Praski terrace”) of Warsaw. Based on the comparison this paper proposes a correlation between the cone penetration resistance the sleeve friction and the number of blows, expressed by the functional relationship. Differences in the matching formulas were shown depending on the saturation of the tested sediments. Correlations were referred to a soil type, which enabled to specify the range of applicability of the proposed relationships. The results of the study were further used to show their diversity using statistical methods. This made it possible to assess the variability of the parameters of the non-cohesive soil, which forms a single lithogenetic unit.
Go to article

Authors and Affiliations

Piotr Zbigniew Zawrzykraj
1
ORCID: ORCID
Anna Bąkowska
1
ORCID: ORCID

  1. University of Warsaw, Faculty of Geology, ul. Zwirki i Wigury 93, 02-089 Warsaw, Poland

This page uses 'cookies'. Learn more