Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The focus of this study is to investigate the applicability of natural mineral iron disulfide (pyrite) in degradation of aromatic compounds including benzene and several chlorinated benzenes (from mono-chlorinated benzene (CB), di-chlorinated benzenes (di-CBs) to tri-chlorobenzenes (tri-CBs) in aerobic pyrite suspension by using laboratory batch experiments at 25°C and room pressure. At first, chlorobenzene was studied as a model compound for all considered aromatic compounds. CB was degraded in aerobic pyrite suspension, transformed to several organic acids and finally to CO2 and Cl-. Transformations of remaining aromatic compounds were pursued by measuring their degradation rates and CO2 and Cl- released with time. Transformation kinetics was fitted to the pseudo-first-order reactions to calculate degradation rate constant of each compound. Degradation rates of the aromatic compounds were different depending on their chemical structures, specifically the number and position of chlorine substituents on the benzene ring in this study. Compounds with the highest number of chlorine substituent at m-positions have highest degradation rate (1,3,5-triCB > 1,3-diCB > others). Three chlorine substituents closed together (1,2,3-triCB) generated steric hindrance effects. Therefore 1,2,3-triCB wasthe least degraded compound. The degradation rates of all compounds were in the following order: 1,3,5-triCB > 1,3-diCB > 1,2,4-triCB ≅ 1,2-diCB ≅ CB ≅ benzene > 1,4-diCB > 1,2,3-triCB. The final products of the transformations were CO2 and Cl-. Oxygen was the common oxidant for pyrite and aromatic compounds. The presence of aromatic compounds reduced the oxidation rate of pyrite, which reduced the amount of ferrous and sulfate ions release to aqueous solution.

Go to article

Authors and Affiliations

Hoa Thi Pham
Inoue Chihiro
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the quantity and distribution of extracellular polymeric substances (EPS) in aerobic granules. Results showed that EPS play an important role in the formation and stabilisation of granules. The content of EPS significantly increases during the first weeks of biogranulation. An analysis of EPS in the granules revealed that the protein level was 5 times higher than in polysaccharides. The increase of protein content correlated with the growth of cell hydrophobicity (r2 = 0.95). EPS and hydrophobicity are important factors in cell adhesion and formation of granules.

The aim of this work was also to determine the distribution of EPS in the granule structure. In situ EPS staining showed that EPS are located mostly in the center of granules and in the subsurface layer. The major components of the EPE matrix are proteins, nucleic acids and β-polysaccharides. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on protein content.

Go to article

Authors and Affiliations

Korneliusz Miksch
Beata Kończak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The most common problems in veterinary practice in bitches are bacterial infections of the reproductive tract associated with fertility problems. Research to determine the correlation between the health status of female dogs and bacterial flora of the genital tract has been ongoing for years, but the results obtained by different authors are often contradictory, and do not always concern breeding bitches. Our study identified the most common aerobic bacteria in the genital tract of numerous breeding bitches population. A total of 275 breeding dogs in anestrous phase of the estrous cycle were included in this study. 198 were qualified to the first group with no genital tract infections and no reproductive disorders. 68 bitches were qualified to the second group with complications such as: infertility, abortion, foetus resorptions and newborn mortality. The type of bacterial isolates was almost the same in the healthy bitches and the group with fertility problems. The most common bacteria obtained from the vaginal tract of the tested dogs were Streptococcus spp., Staphylococcus spp., Mycoplasma canis and Escherichia coli. There were no significant differences in bacterial prevalence in the group with reproductive problems versus healthy dogs; however, we found a statistically significant difference between both groups when the numbers of bacterial strains were compared. The number of one-strain bitches was statistically higher in the problematic group than in the non-problematic one. Bacterial culturing of vaginal swab specimens from breeding bitches without clinical signs of genital disease is of little value. Furthermore, it should always be preceded by an examination (clinical, cytological or vaginoscopy etc.). The request or requirement to perform vaginal cultures that is made by some breeders, while common, is not diagnostic for any pathologic condition and the results of these cultures should never be used to determine if antibiotic therapy is indicated.
Go to article

Bibliography

1. Bjurström L (1993) Aerobic bacteria occurring in the vagina of bitches with reproductive disorders. Acta Vet Scand 34: 29-34.
2. Bjurström L, Linde-Forsberg C (1992) Long-term study of aerobic bacteria of the genital tract in breeding bitches. Am J Vet Res 53: 665-669.
3. Chalker VJ, Owen WM, Paterson C, Barker E, Brooks H, Rycroft AN, Brownlie J (2004) Mycoplasmas associated with canine infec-tious respiratory disease. Microbiology 150: 3491-3497.
4. Concannon PW (2011) Reproductive cycles of the domestic bitch. Anim Reprod Sci 124: 200-210.
5. Delucchi L, Fraga M, Perelmuter K, Cidade E, Zunino P (2008) Vaginal lactic acid bacteria in healthy and ill bitches and evaluation of in vitro probiotic activity of selected isolates. Can Vet J 49: 991-994.
6. Dzięcioł M, Niżański W, Stańczyk E, Kozdrowski R, Najder-Kozdrowska L, Twardoń J (2013) The influence of antibiotic treatment of bitches in oestrus on their attractiveness to males during mating. Pol J Vet Sci 16: 509-516.
7. Golińska E, Sowińska N, Tomusiak-Plebanek A, Szydło M, Witka N, Lenarczyk J, Strus M (2021) The vaginal microflora changes in various stages of the estrous cycle of healthy female dogs and the ones with genital tract infections. BMC Vet Res 17: 8
8. Groppetti D, Pecile A, Barbero C, Martino PA (2012) Vaginal bacterial flora and cytology in proestrous bitches: role on fertility. Theri-ogenology 77: 1549-1556.
9. Hu J, Cui L, Wang X, Gao X, Qiu S, Qi H, Jiang S, Li F, Yin Y (2022) Dynamics of vaginal microbiome in female beagles at different ages. Res Vet Sci 149: 128-135.
10. Hutchins RG, Vaden SL, Jacob ME, Harris TL, Bowles KD, Wood MW, Bailey CS (2014) Vaginal microbiota of spayed dogs with or without recurrent urinary tract infections. J Vet Intern Med 28: 300-304.
11. Janowski T, Zduńczyk S, Borkowska I, Jurczak A, Podhalicz-Dzięgielewska M (2008) Vaginal and uterine bacterial flora at different stages of the estrus cycle in bitches. Med Weter 64: 444-446
12. Janowski T, Zduńczyk S, Jurczak A, Socha P (2008) Incidence of mycoplasma canis in the vagina in three groups of bitches. Bull Vet Inst Pulawy 52: 533-535.
13. Lyman CC, Holyoak GR, Meinkoth K, Wieneke X, Chillemi KA, DeSilva U (2019) Canine endometrial and vaginal microbiomes reveal distinct and complex ecosystems. PLoS One 14: e0210157
14. Maksimovic A, Maksimovic Z, Filipovic S, Besirovic H, Rifatbegovic M (2012) Vaginal and uterine bacteria of healthy bitches during different stages of their reproductive cycle. Vet Rec 171: 375.
15. Maksimović Z, Maksimović A, Halilbašić A, Rifatbegović M (2018) Genital mycoplasmas of healthy bitches. J Vet Diagn Invest 30: 651-653.
16. McDonald JH (2009) Handbook of biological statistics, 2nd ed., Sparky House Publishing: Baltimore, MD, USA, pp 1-319.
17. Noguchi K, Tsukumi K, Urano T (2003) Qualitative and quantitative differences in normal vaginal flora of conventionally reared mice, rats, hamsters, rabbits and dogs. Comp Med 53: 404-412.
18. Pretzer SD (2008) Bacterial and protozoal causes of pregnancy loss in the bitch and queen. Theriogenology 70: 320-326.
19. Root Kustritz MV (2006) Collection of tissue and culture samples from the canine reproductive tract. Theriogenology 66: 567-574.
20. Root Kustritz MV (2008) Vaginitis in dogs: a simple approach to a complex condition. Vet Med 103: 562-567.
21. Rota A, Corrò M, Patuzzi I, Milani C, Masia S, Mastrorilli E, Petrin S, Longo A, Del Caro A, Losasso C (2020) Effect of sterilization on the canine vaginal microbiota: a pilot study. BMC Vet Res 16: 455
22. Ruzauskas M, Couto N, Pavilonis A, Klimiene I, Siugzdiniene R, Virgailis M, Vaskeviciute L, Anskiene L, Pomba C (2016) Character-ization of Staphylococcus pseudintermedius isolated from diseased dogs in Lithuania. Pol J Vet Sci 19: 7-14.
23. Smith FO (2006) Canine pyometra. Theriogenology 66: 610-612.
24. Stanisz A (2006) Easy course of statistic using Statistica PL and medicine examples. 1. Basic Statistic. StatSoft Polska, Kraków, Poland, p 532.
25. Van Duijkeren E (1992) Significance of the vaginal bacterial flora in the bitch: a review. Vet Rec 131: 367-369.
26. Watts JR, Wright PJ, Whithear KC (1996) Uterine, cervical and vaginal microflora of the normal bitch throughout the reproductive cycle. J Small Anim Pract 37: 54-60.
27. Zduńczyk S, Janowski T, Borkowska I (2006) Vaginal and uterine bacterial flora in bitches with physiological and inflammatory. Med Weter 62: 1116-1119.

Go to article

Authors and Affiliations

D. Jagódka
1
E. Kaczorek-Łukowska
2
R. Graczyk
3
P. Socha
4

  1. AURA Veterinary Clinic, Dębowa 31, 86-065 Lochowo, Poland
  2. Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
  3. Department of Biology and Animal Environment, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
  4. Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, we performed the qualitative analysis of exoproteins during granule formation in the pres- ence or in the absence of cations. The staining of thin granule cryosections showed that nucleic acids, proteins, polysaccharides and calcium cations were the dominant components of the granules. Proteins are the structural components associated with calcium ions. We determined changes in the proteomic profile and tightly bound extracellular polymeric substances (EPS) of the slime. The exopolymeric matrix containing the proteins was extracted using the Dowex resin method. Proteomic profile was analysed by SDS-PAGE method (sodium dodecyl sulphate polyacrylamide gel electrophoresis) using Coomassie blue staining in the samples of the aerobic granule matrix formed in the presence of multivalent cations and compared with that of the aerobic granules cultivated without cations. The results indicate that the granule matrix is predominantly composed of large and complex proteins that are tightly bound within the granular structure. The tightly bound extracellular polymeric substances (TB-EPS) may play a role in improved mechanical stability of aerobic granules. In the supernatant fraction of the sludge, only a small amount of free proteins in the medium molecular mass range was detected. The protein with high molecular mass ( 116 kDa) produced in the reactors with added Ca2+. Ca2+ had a considerable regulatory influence on production of extracellular proteins during aerobic granulation.
Go to article

Authors and Affiliations

Beata Kończak
1
Korneliusz Miksch
2

  1. Department ofWater Protection, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland
  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concentrations of the polycyclic aromatic hydrocarbons (PAH) and heavy metals in leachates from the autothermal thermophilic aerobic digestion (ATAD). The leachates from ATAD installations (Dąbrowa Białostocka, Hajnówka, Pisz, Olecko, Giżycko, Wysokie Mazowieckie) located in Poland were tested. The concentrations of PAHs in samples from Pisz, Giżycko, Wysokie Mazowieckie and Hajnówka were similar to those in industrial wastewater. The cluster analysis confirmed that in sites with a higher polyethylene (p.e.) input from the industrial sector, the leachates were more contaminated with PAH compounds. In samples from Dąbrowa Białostocka, Olecko, Pisz and Hajnówka, the heavy fraction of PAHs compounds prevailed over the light fraction. Concentrations of heavy metals in leachates from ATAD varied. The Ward’s method isolated the wastewater treatment plant in Giżycko. The p.e. from the industrial sector was the highest for this facility. Also, the samples from ATAD had the highest total concentration of heavy metals (5.87 mg/l). The leachates from ATAD are returned to biological systems of municipal sewage treatment plants, where they can be combined into more toxic compounds. Biological wastewater treatment processes do not ensure the removal of PAHs and heavy metals from the wastewater. As a result, harmful compounds can get into the water or ground, polluting the environment.
Go to article

Authors and Affiliations

Dariusz Boruszko
1
ORCID: ORCID
Ada Wojciula
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,15-351 Białystok, Wiejska 45E, Poland

This page uses 'cookies'. Learn more