Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the toxicity changes of landfill leachate during landfill processes simulation as well as after Advanced Oxidation Processes implementation to the leachate. A bioluminescence toxicity test Toxalert®10 with the pure cultures of Vibrio fischeri was used. The significant difference in the leachate toxicity originating from acidogenic landfill phase in comparison to the methanogenic phase was noticed. The leachate ozonation led to the toxicity reductions. The hydrogen peroxide application caused the toxicity increase and slowed down the landfill processes.
Go to article

Authors and Affiliations

Katarzyna Kaczorek
Stanisław Ledakowicz
Download PDF Download RIS Download Bibtex

Abstract

The photochemical degradation of the sulfadiazine (SDZ) was studied. The photochemical processes used in degradation of SDZ were UV and UV/H2O2. In the experiments hydrogen peroxide was applied at different concentrations: 10 mg/dm3 (2.94*10-4 M), 100 mg/dm3 (2.94*10-3 M), 1 g/dm3 (2.94*10-2 M) and 10 g/dm3 (2.94*10-1 M). The concentrations of SDZ during the experiment were controlled by means of HPLC. The best results of sulfadiazine degradation, the 100% removal of the compound, were achieved by photolysis using UV radiation in the presence of 100 mg H2O2/dm3 (2.94*10-3 M). The determined rate constant of sulfadiazine reaction with hydroxyl radicals kOH was equal 1.98*109 M-1s-1.

Go to article

Authors and Affiliations

Natalia Lemańska-Malinowska
Ewa Felis
Joanna Surmacz-Górska
Download PDF Download RIS Download Bibtex

Abstract

Treatment of leachate from an exploited since 2004 landfill by using two methods of advanced oxidation processes was performed. Fenton’s reagent with two different doses of hydrogen peroxide and iron and UV/H2O2 process was applied. The removal efficiency of biochemically oxidizable organic compounds (BOD5), chemically oxidizable compounds using potassium dichromate (CODCr) and nutrient (nitrogen and phosphorus) was examined. Studies have shown that the greatest degree of organic compounds removal expressed as a BOD5 index and CODCr index were obtained when Fenton’s reagent with greater dose of hydrogen peroxide was used - efficiency was respectively 72.0% and 69.8%. Moreover, in this case there was observed an increase in the value of ratio of BOD5/CODCr in treated leachate in comparison with raw leachate. Application of Fenton’s reagent for leachate treatment also allowed for more effective removal of nutrients in comparison with the UV/H2O2 process.

Go to article

Authors and Affiliations

Barbara Pieczykolan
Izabela Płonka
Krzysztof Barbusiński
Magdalena Amalio-Kosel
Download PDF Download RIS Download Bibtex

Abstract

Advanced automotive fleet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2O2) process for different process parameters: ZVI and H2O2 doses, time, pH. The highest Chemical Oxygen Demand (COD) removal efficiency, 76%, was achieved for ZVI/H2O2 doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and color were also completely removed. COD removal efficiency was increasing with ZVI dose. Change pH value below and over 3.0 causes a rapid decrease in the treatment effectiveness. The Air/ZVI/H2O2 process kinetics can be described as d[COD]/dt = −a [COD]tm, where ‘t’ corresponds with time and ‘a’ and ‘m’ are constants that depend on the initial reagent concentrations. H2O2 influence on process effect was assessed. COD removal could be up to 40% (560 mg/L) for Air/ZVI process. The FeCl3 coagulation effect was also evaluated. The best coagulation results were obtained for 700 mg/L Fe3+ dose, that was slightly higher than dissolved Fe used in ZVI/H2O2 process. COD was decreased to 509 mg/L.

Go to article

Authors and Affiliations

Jan Paweł Bogacki
Hussein Al-Hazmi
Download PDF Download RIS Download Bibtex

Abstract

The research focused on TiO2 nanostructures environmental applications due to the special characteristics that displayed degradation of the organic compounds into environmentally friendly products through exposure to UV light. The protocol behind obtaining the nanostructures involved the use of a Ti material exposed to alkaline treatment and advanced oxidation using NaOH solution and acetone. These studied nanostructures were analyzed extensively by using methods such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) for characterizing the elements, compounds and morphological properties of the material. These differences in morphology is attributed to different NaOH solution concentrations. The Ti sheets were immersed into NaOH and acetone mixed solutions for 72 hours. The best results were recorded by using 30% NaOH solution. After obtaining the 3D structures, which improve specific surface and contact area with the environment, the samples were tested under UV light in order to degrade methylene blue in order to determine their photocatalytic performance.
Go to article

Authors and Affiliations

C.I. Tarcea
1
ORCID: ORCID
C.M. Pantilimon
1
ORCID: ORCID
G. Coman
1
ORCID: ORCID
A.A. Turcanu
1
ORCID: ORCID
A.M. Predescu
1
ORCID: ORCID
E. Matei
1
ORCID: ORCID
A.C. Berbecaru
1
ORCID: ORCID
C. Predescu
1
ORCID: ORCID

  1. University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD) removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II) of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT) of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L). These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

Go to article

Authors and Affiliations

Haiming Zou
Wanzheng Ma
Yan Wang
Download PDF Download RIS Download Bibtex

Abstract

The study of the possibility of removing organic compounds from wastewater originating from the biodiesel purification stage by two catalytic processes, HSO5-/transition metal and Fenton method has been presented. The source of the ion HSO5- is potassium monopersulphate (2KHSO5·KHSO4·K2SO4) (Oxone) that may be decomposed into radicals (OH., SO4-., SO5-.) by means of transition metal as Co(II). Different concentrations were used for both compounds and the combination ([Co2+] = 1.00μM/[HSO5-] = 5.00·10-2 M) achieved the highest COD removal (60%) and complete decomposition of the oxidant was verified for contact times of 45 min. This process has some advantages comparing to the conventional Fenton method such as the absence of the costly pH adjustment and the Fe(III) hydroxide sludge which characterize this treatment process. The Fenton process showed that the combination of [H2O2] = 2.00M/[Fe2+] = 0.70 M was the best and archived COD removal of 80%. The treatments studied in this research have achieved high COD removal, but the wastewater from the biodiesel purification stage presents very high parametric values of Chemical Oxygen Demand (667,000 mgO2/L), so the final COD concentration reached is still above the emission limit of discharge in surface water, according the Portuguese Law (Decree-Law 236/98). However, both treatments have proved to be feasible techniques for the pre-oxidation of the wastewater under study and can be considered as a suitable pre-treatment for this type of wastewaters. A rough economic analysis of both processes was, also, made.

Go to article

Authors and Affiliations

Teresa Borralho
Solange Coelho
Andreia Estrelo
Download PDF Download RIS Download Bibtex

Abstract

The possibility of removing organic compounds from wastewater originating from the photochemical production of printed circuit boards by use of waste acidification and disposal of precipitated photopolymer in the first stage and the UV-Fenton method in a second stage has been presented. To optimize the process of advanced oxidation, the RSM (Response Surface Methodology) for three independent factors was applied, i.e. pH, the concentration of Fe(II) and H2O2 concentration. The use of optimized values of individual parameters in the process of wastewater treatment caused a decrease in the concentration of the organic compounds denoted as COD by approx. 87% in the first stage and approx. 98% after application of both processes. Precipitation and the decomposition of organic compounds was associated with a decrease of wastewater COD to below 100 mg O2/L whereas the initial value was 5550 mg O2/L. Decomposition of organic compounds and verification of the developed model of photopolymers removal was also carried out with use of alternative H2O2 sources i.e. CaO2, MgO2, and Na2CO3·1,5H2O2.

Go to article

Authors and Affiliations

Barbara Białecka
Maciej Thomas
Dariusz Zdebik
Download PDF Download RIS Download Bibtex

Abstract

Surfactants after their use are discharged into aquatic ecosystems. These compounds may be harmful to fauna and flora in surface waters or can be toxic for microorganisms of the activated sludge or biofilm in WWTP. In order to determine effectiveness of different advanced oxidation processes on the degradation of surfactants, in this study the degradation of anionic surfactants in aqueous solution using photolysis by 254 nm irradiation and by advanced oxidation process in a H2O2/UVC system was investigated. Two representatives of anionic surfactants, linear alkyl benzene sulphonate (LAS-R11–14) and ether carboxylic derivate (EC-R12–14E10) were tested. The influence of pH, initial surfactant concentration and dose of hydrogen peroxide on the degradation was also studied. Results show outstanding effectiveness of the H2O2/UVC system in the removal of surfactant from aqueous solutions.

Go to article

Authors and Affiliations

Francisco Ríos
Stanisław Ledakowicz
Magdalena Olak-Kucharczyk
Marta Gmurek

This page uses 'cookies'. Learn more