Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM) after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

Go to article

Authors and Affiliations

Jadwiga Kaleta
Małgorzata Kida
Piotr Koszelnik
Dorota Papciak
Alicja Puszkarewicz
Barbara Tchórzewska-Cieślak
Download PDF Download RIS Download Bibtex

Abstract

Adsorption experiments of nitric oxide in nitrogen carrier gas were held on activated carbon in a fixed bed flow system. Breakthrough curves describing the dependence of exit concentrations of nitric oxide on time were matched with theoretical response curves calculated from the linear driving force model (LDF). The model assumes Langmuir adsorption isotherm for the description of non-linear equilibrium and overall mass transfer coefficient for mass transfer mechanism. Overall mass transfer coefficients were obtained by the method of least squares for fitting numerically modelled breakthrough curves with experimental breakthrough curves. It was found that LDF model fits all the breakthrough curves and it is a useful tool for modelling purposes.

Go to article

Authors and Affiliations

Lenka Kuboňová
Lucie Obalová
Oldřich Vlach
Ivana Troppová
Jaroslav Kalousek
Download PDF Download RIS Download Bibtex

Abstract

Microporous carbon molecular sieves of extremely narrow pore size distribution were obtained by carbonization of a novel raw material (Salix viminalis). The precursor is inexpensive and widely accessible. The pore capacity and specific surface area are upgradable by H3PO4 treatment without significant change of narrowed PSD. The dominating pore size indicates that these molecular sieves are a potential competitor to other nanoporous materials such as opened and purified carbon nanotubes.

Go to article

Authors and Affiliations

Jerzy Łukaszewicz
Krzysztof Zieliński
Download PDF Download RIS Download Bibtex

Abstract

This paper shows the possibility that the mineral coal existing in the mining basins of northern Spain have a high added value. This would facilitate its future use in different fields such as new materials, nanotechnology, energy use in situ, coal bed methane, enhanced coal bed methane and coalmine methane.

An analytical study of mineral coal samples is carried out. The samples come from two deposits located in coal basins of the Cantabrian Mountains. The duly prepared samples are subjected to an activation process. Within this transformation, different treatments are applied to different sub-samples. Some of the sub-samples suffer a previous demineralization by successive attacks with acids, followed by oxidation and pyrolysis. Finally, all of them are activated with CO2 and H2O(steam).

The carbonaceous products resulting from each treatment are characterised. The results show that all the pre-treatments used were positive for the textural development of the materials. Likewise, proper management of the processes and of the different operating variables allows the procurement of carbonaceous materials with a “tailor-made” structural development of the coal type. This material receives the name “activated” and can be employed in specific processes.

Go to article

Authors and Affiliations

Juan-José Vidal-Lombas
Martina-Inmaculada Álvarez-Fernández
María-Concepción Casado-Sulé
Maria-Belen Prendes-Gero
Francisco-José Suárez-Domínguez
Download PDF Download RIS Download Bibtex

Abstract

Water contamination that caused by heavy metals is a very common phenomenon in the industrial age. One of the popular way to treat metal contaminated water is by adsorption process using activated carbon as the adsorbent. This paper works on producing activated carbon by chemical means with impregnation ratios of NaOH:char (w/w) was predetermined at 1:1 (ACT1-1), 2:1 (ACT2-1) and 3:1 (ACT3-1) under activation temperature of 700°C. Considering the Leucaena leucocephala is a wildly, easy and fast grown species, with the availability throught the year, it was chosen to be used as the precursor. The properties of these activated carbons and its potential for cadmium removal from aqueus solution was analyzed. It was found that the highest surface area was recorded at 662.76 m²/g. Four parameters were studied which are contact time, the effect of pH, initial concentration of adsorbate and temperature. The equilibrium time was achieved in 40 min treatment at initial concentrations of 30 mg/l. The adsorbent exhibited good sorption potential for cadmium at pH 8.0 and equilibrium temperature of 30℃. Based on the results, this study had proved that activated carbon from Leucaena leucocephala biomass have the good potential to be used for removal of cadmium from wastewater.
Go to article

Authors and Affiliations

W.M.H.W. Ibrahim
1
N.S. Sulaiman
2
M.H.M. Amini
1
W.R.A. Kadir
3
M. Mohamed
1
S.F.M. Ramle
1
U. Bilgin
4
W. Rahman
5 6

  1. Universiti Malaysia Kelantan, Faculty of Bioengineering and Technology, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
  2. Universiti Sains Malaysia, School of Industrial Technology, 11800 Minden, Penang, Malaysia
  3. Forest Research Institute Malaysia, 52109 Kuala Lumpur, Selangor, Malaysia
  4. Karadeniz Technical University, Faculty of Forestry, 61080 Trabzon, Turkey
  5. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  6. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

It is estimated that the amount of used car tires in the European Union in 2016 was established at the level of 3,515,000 Mg, which is undoubtedly a problem from the point of view of engineering and environmental protection. An alternative to storing this waste in landfills is their pyrolysis. As a result of thermal decomposition, calorific value products (oil and gas fraction) are obtained, as well as a solid residue, which due to its composition and properties can be processed into a high quality carbon sorbent. For this purpose, various methods of modification of the pyrolyzate are used, both involving physical and chemical activation. This article presents the characteristics of solid residue after the pyrolysis of rubber tires running at a temperature of about 400°C, which included an analysis of chemical composition (XRF and IR), mineralogical composition (XRD, SEM-EDS) and textural characteristics. Additionally, for the purpose of activation, the sample was treated with nitrogen at a temperature of 550°C. The mineralogical analysis showed that the dominant mineral component is carbon. In addition, the presence of quartz, calcite and sphalerite was observed. Analysis of the chemical composition suggests that due to the high carbon content (about 80% by mass) it is possible for a carbon sorbent from the analyzed waste to be obtained. However, previous preliminary studies did not allow a material constituting a substitute for activated carbon to be obtained, because the applied modification only slightly increased the BET specific surface area, which reached the value of approx. 85 m2/g. Based on the analysis of the pore size distribution of the 2 tested samples, it was found to be homogeneous/modal with a micro/mesoporous nature, while the shape of the hysteresis loop suggests the presence of “bottle shape” pores. Due to the relatively high content of zinc, the composition of waste (about 4% of mass), the possibility of recovery of this element should also be considered.

Go to article

Authors and Affiliations

Dorota Czarna-Juszkiewicz
Magdalena Wdowin
Piotr Kunecki
Paweł Baran
Rafał Panek
Robert Żmuda
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests concerning the possibility of utilizing activated carbons produced in Poland, as well as of non-conventional adsorbents, such as modified Clarion clay and clinoptylolite, for removing methylene blue from water. The objective of tests carried out was a quantitative formulation of the adsorption process, as well as the determination of the effects of various factors on its course. The attempt was taken to solve the tasks defined in the objective of the study using model experimental systems. The methylene blue solution in concentration 20 mg/dm', prepared on the basis of distilled water, was used as adsorbate. Adsorption processes, conducted in batch mode (in no-flow conditions), were best described by the Freundlich isotherms. On the basis of the isotherms the adsorptive capacity of tested adsorbents was calculated. The throughflow conditions were realized by a columnar filtration method. On the basis of obtained results the breakthrough curves (isoplanes) were plotted. The adsorptive capacities, determined on the basis of isoplanes reached 27--41 mg/g, 14.89 mg/g and 5.54 mg/g for activated carbons, modified Clarion clay and clinoptylolite, respectively. Exit curves (isoplanes) served for defining the mass transfer zone (the adsorption front height), a., well as for calculating the mass-exchange-zone moving rate. Despite their inferior adsorptive characteristics the modified Clarion clay and clinoptylolite may be taken into account as shielding materials in relation to activated carbons.
Go to article

Authors and Affiliations

Jadwiga Kaleta
Download PDF Download RIS Download Bibtex

Abstract

In this study, the removal of imidacloprid (IMD) pesticide onto activated carbon produced from nut shells of hazelnut (HAC), and walnut (WAC) has been investigated. The prepared activated carbons were characterised by total carbon, nitrogen and hydrogen content, surface areas and pore volume. Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM) were studied before and after adsorption experiments. Effects of adsorbent dose (0.02–0.2 g), contact time (10–120 min), initial imidacloprid concentration (10–100 mg∙dm –3), and pH (1–8), and temperatures (25–50°C) on the removal of IMD pesticide by HAC and WAC in the batch mode were studied. The removal percentage of imidacloprid pesticide by HAC and WAC was 93.79% and 94.72%, respectively. The study showed that the pseudo-second-order kinetics model fitted well for both activated carbons. Moreover, adsorption isotherm results were evaluated using Freundlich, Langmuir and Temkin isotherm models. The adsorption results correlated well with the Langmuir isotherm model ( R2 = 0.987 and 0.964) with maximum adsorption capacities of 76.923 and 83.333 mg∙g –1 for HAC and WAC, respectively, and an equilibrium time within 120 min. The nature of the adsorption of imidacloprid pesticide onto HAC and WAC is exothermic, spontaneous and physical in nature. The two prepared activated carbons (HAC, WAC) were successfully regenerated for three cycles and could be used as an effective and low-cost adsorbent for the removal of IMD pesticide from aqueous solutions. The production of the activated carbons of HAC and WAC will provide minimisation of these wastes in the environment.
Go to article

Authors and Affiliations

Somaia Gaber Mohammad
1
ORCID: ORCID
Ahmed A. El-Refaey
2

  1. Agricultural Research Center, Central Agricultural Pesticides Laboratory, Pesticide Residues and Environmental Pollution Department, 12618, Dokki, Giza, Egypt
  2. Matrouh University, Faculty of Desert and Environmental Agriculture, Soil and Water Science Department, Matrouh, Egypt
Download PDF Download RIS Download Bibtex

Abstract

There is general agreement that primary pyrolysis products of end-of-life tyres should be valorised to improve the economics of pyrolysis. In this work, tyre pyrolysis char (TPC) is produced in a pyrolysis pilot plant designed and built at our home university. The produced TPC was upgraded to tyre-derived activated carbon (TDAC) by activation with CO2, and then characterised using stereological analysis (SA) and nitrogen adsorption at 77 K. SA showed that the grains of TPC and TDAC were quasi- spherical and slightly elongated with a 25% increase in the mean particle cross-section surface area for TDAC. The textural properties of TDAC demonstrated the BET and micropore surface areas of 259 and 70 m2/g, respectively. Micropore volume and micropore surface area were 5.8 and 6.7 times higher for TDAC than TPC at  2 nm, respectively. The n-hexane adsorption was investigated using experiments and modelling. Eight adsorption isotherms along with three error functions were tested to model the adsorption equilibrium. The optimum sets of isotherm parameters were chosen by comparing sum of the normalized errors. The analysis indicated that the Freundlich isotherm gave the best agreement with the equilibrium experiments. In relation to different activated carbons, the adsorption capacity of TDAC for n-hexane is about 16.2 times higher than that of the worst reference material and 4.3 times lower than that of the best reference material. In addition, stereological analysis showed that activation with CO2 did not change the grain’s shape factors. However, a 25% increase in the mean particle cross-section surface area for TDAC was observed.

Go to article

Authors and Affiliations

Tomasz Kotkowski
ORCID: ORCID
Robert Cherbański
ORCID: ORCID
Eugeniusz Molga
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Catalytic properties of activated carbons oxidized, treated with N-compounds, and promoted with copper were studied in selective catalytic reduction NOX by ammonia (NH3-SCR). The modification of the catalysts consisted of a series of steps (pre-oxidation of activated carbon, impregnation with urea, impregnation with copper). The physicochemical properties of the obtained samples were determined using X-ray diffraction, FT-IR spectroscopy, and low-temperature N2 sorption. The modification with copper improved the catalytic activity and stability of the catalysts. All the functionalized carbon doped with copper reached more than 90% of NO conversion and CO2 did not exceed 240 ppm at 220 ◦C. The sample doped with 5 wt.% Cu had the maximum NO conversion of 98% at 300 ◦C. The maximum N2O concentration detected for the same sample was only 55 ppm, which confirmed its selectivity.

Go to article

Authors and Affiliations

Marwa Saad
Anna Białas
Przemysław Grzywacz
Cezary Czosnek
Bogdan Samojeden
Monika Motak
Download PDF Download RIS Download Bibtex

Abstract

The cyclic Electrothermal Temperature Swing Adsorption (ETSA) process in a fixed-bed column with Supersorbon K40 activated carbon (AC) was applied to remove propan-2-ol (IPA) from air. The bed was electrothermally regenerated using direct resistive heating method. The tests were performed in the range of operating parameters: IPA loading 0.18-0.26 kg/kg, voltage 19.5 V, set-point temperature 393–403 K, nitrogen flow rate 0.12 m3/h.

The analysis revealed, that raising the bed temperature resulted in an increase of desorption degree of adsorbate, reduction of regeneration time and an increase in the energy consumption. The application of insulation enabled reduction of energy consumption and regeneration time by 27% and 10%, respectively.

Go to article

Authors and Affiliations

Krzysztof Kowalski
Elżbieta Gabruś
Dorota Downarowicz
Download PDF Download RIS Download Bibtex

Abstract

This work investigates adsorption of n-hexane on activated tyre pyrolysis char (ATPC) and granular activated carbon (GAC) as a reference material in a fixed-bed column. Microwave-assisted regeneration is also considered. The adsorbed amount of n-hexane on ATPC is in the range of 37–58 mg/g. Microwave-assisted desorption of ATPC samples enables the recovery of up to 95% of adsorbed n-hexane in this non-optimized microwave setup with the efficiency of microwave energy conversion into heat of only 5–6%. For the 50% breakthrough time, ATPC and GAC are able to purify the n-hexane gas volumes in the ranges of 20–90 and 935–1240 cm3/g, respectively. While adsorption kinetics is not satisfactorily described by pseudo-first and pseudo-second order kinetic models, it is very well reflected by a family of dynamic adsorption models, which are modelled with a single logistic function. Internal diffusion is likely the rate limiting step during adsorption on ATPC, while external and internal diffusion likely plays a role in adsorption to GAC. Although microwave-assisted regeneration is performed in a general purpose microwave reactor, both adsorbents show excellent performance and are very good candidates for the adsorption process. Preliminary results show that magnetite can further reduce microwave energy consumption.
Go to article

Authors and Affiliations

Tomasz Kotkowski
1
ORCID: ORCID
Robert Cherbański
1
ORCID: ORCID
Eugeniusz Molga
1
ORCID: ORCID

  1. Chemical and Process Engineering Department, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Still unsolved is the problem of monitoring the tissue regeneration with the use of implants (substrates) in in vivo conditions. The multitude of implant materials combined with their specific immanent often limit standard diagnostic methods, i.e. X-rey or computer tomography (CT). This is particularly difficult in therapies using polymeric high-resistance substrates for tissue engineering. The aim of this study was to fabricate a non-woven carbon fiber composed of carbon fibers (CF) which were then subjected to a surface modification by magnetron sputtering. A layer of iron (Fe) was applied under inert conditions (argon) for different time periods (2-10 min). It was shown that already after 2-4 minutes of iron sputtering, the voxel surface (CF_Fe2’, CF_Fe4’) was covered with a heterogeneous iron layer observed by scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDS). The longer the modification time, the more uniform the layer on the fiber surface becomes. This can be seen by the change in the wettability of the nonwoven surface which decreases from 131° for CF_Fe2 to 120° for CF_Fe10. The fibers do not change their geometry or dimensions (~11.5 um). The determination of pore size distribution by adsorption and desorption techniques (BJH) and specific surface area by nitrogen adsorption method (BET) have shown that the high specific surface area for the CF_Fe2’ fibers decreases by 10% with the increasing iron sputtering time. All the studied CF_Fe fibers show good biocompatibility with osteoblast-like cells MG-63 cells after both 3 and 7 days of culture. Osteoblasts adhere to the fiber surface and show correct morphology.
Go to article

Authors and Affiliations

E. Stodolak-Zych
1
ORCID: ORCID
M. Kudzin
2
ORCID: ORCID
K. Kornaus
1
ORCID: ORCID
M. Gubernat
1
ORCID: ORCID
E. Kaniuk
1
M. Bogun
2
ORCID: ORCID

  1. AGH University of Science and Technology, Departament Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Łukasiewicz – Lodz Institute of Technology, Łodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Filtering Respiratory Protective Devices (FRPD) is not typically evaluated for exposure to volatile compounds, even though they significantly affect their protective performance. Such compounds are released into the atmosphere by industrial processes and pose serious health risks in people inhaling them. The adsorbent materials currently used to prevent those risks include activated carbon (AC). Zeolites and mesoporous silica materials (MCM) are very popular among the sorption materials. Due to their physical and chemical properties, they are able to adsorb significant amounts of volatile compounds from air. The melt-blown technology was used to produce filtering nonwovens with modifiers. As a result, polymer nonwoven structures with modifiers in the form of AC, zeolite (NaP1 type), molecular sieves (SM, SM 4Å) and mesoporous silica materials (MCM-41) were produced. The use of ACs (AC1 from Zgoda and AC2 from Pleisch) and their mixtures with others modifiers allowed to obtain satisfactory sorption, protective and utility properties. The longest breakthrough time against cyclohexane (approx. 53 min) was afforded by a variant containing AC, against ammonia (approx. 12 min) for the variant with AC2 and a mixture of AC2 and MCM-41. In the case of acetone vapor satisfactory breakthrough times were found for the variants with AC2 and AC1+SM (~20–25 min.). The present work deals with scientific research to improve workers’ and society’s health and safety by pursuing a better working life, and creating a safe social environment.
Go to article

Bibliography

  1. Anand, S.S., Philip, B.K. & Mehendale, H.M. (2014). Volatile Organic Compounds, [In] Wexler, P. (ed.) Encyclopedia of Toxicology (Third Edition), Academic Press, pp. 967-970, ISBN: 9780123864550, DOI: 10.1016/B978-0-12-386454-3.00358-4
  2. Amid, H., Maze, B., Flickinger, M.C. & Pourdeyhimi, B. (2016). Hybrid adsorbent nonwoven structures: a review of current technologies. Journal of Material Science, 51, pp. 4173-4200, DOI: 10.1007/s10853-016-9741-x
  3. Balanay, J.A.G., Bartolucci, A.A. & Lungu, C.T. (2014). Adsorption Characteristics of Activated Carbon Fibers (ACFs) for Toluene: Application in Respiratory Protection. Journal of Occupacional Environmental and Hygiene, 11, pp. 133-143, DOI: 10.1080/15459624.2013.816433
  4. Balanay, J.A.G. & Lungu, C.T. (2016). Determination of pressure drop across activated carbon fiber respirator cartridges. Journal of Occupational Environmental and Hygiene, 13, pp. 141-147, DOI: 10.1080/15459624.2015.1091960
  5. Baysal, G. (2019). Cleaning of pesticides from aqueous solution by a newly synthesized organoclay. Archives of Environmental Protection, 45(3), pp. 21–30, DOI: 10.24425/aep.2019.128637
  6. Brochocka, A., Nowak A., Panek, R. & Franus, W. (2019). The Effects of Textural Parameters of Zeolite and Silica Materials on the Protective and Functional Properties of Polymeric Nonwoven Composites. Applied Science, 9. pp. 515, DOI: 10.3390/app9030515
  7. Brochocka, A., Zagawa, A., Panek, R., Madej, J. & Franus, W. (2018). Method for introducing zeolites and MCM-41 into polypropylene melt-blown nonwovens. AUTEX Research Journal, DOI: 10.1515/aut-2018-0043
  8. Buonanno, G., Marks, G.B. & Morawska, L. (2013). Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environmental Pollution, 180, pp. 246-250, DOI: 10.1016/j.envpol.2013.05.039
  9. Buteau, S. & Goldberg, MS. (2016). A structured review of panel studies used to investigate associations between ambient air pollution and heart rate variability. Environmental Research, 148, pp. 207-247, DOI: 10.1016/j.envres.2016.03.013
  10. Cerrillo, J.R., Palomares, A.E. & Rey, F. (2020). Silver exchanged zeolites as bactericidal additives in polymeric materials. Microporous and Mesoporous Material, 305, pp. 110367, DOI: 10.1016/j.micromeso.2020.110367
  11. Cheng, T., Jiang, Y., Zhang, Y. & Shuanqiang, L. (2004). Prediction of breakthrough curves for adsorption on activated carbon fibres in a fixed bed. Carbon, 42, pp. 3081-3085, DOI: 10.1016/j.carbon.2004.07.021
  12. Chiang, Y.C. & Juang, R.S. (2017). Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. Journal of the Taiwan Institute of Chemical Engineers, 71, pp. 214-234, DOI:10.1016/j.jtice.2016.12.014
  13. Commission Directive 2000/39/EC of 8 June 2000 establishing a first list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work, http://data.europa.eu/eli/dir/2000/39/2018-08-21
  14. Czuma, N., Zarębska, K. & Baran, P. (2016). Analysis of the influence of fusion synthesis parameters on the SO2 sorption properties of zeolites produced out of fly ash. SEED Science Research, 10, DOI: 10.1051/e3sconf/20161000010
  15. Das, D., Vivekand, G. & Nishith, V. (2004). Removal of volatile organic compound by activated carbon fiber. Carbon, 42, pp. 2949-2962, DOI: 10.1016/j.carbon.2004.07.008
  16. Deng, L., Yuan, P., Liu, D., Annabi-Bergaya, F. & Zhou, J. (2017). Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviours. Applied Clay Science, 143, pp. 184-191, DOI:10.1016/j.clay.2017.03.035
  17. Duad, W.M.A.W. & Haushamnd, A.H. (2010) Textural characteristics, surface chemistry and oxidation of activated carbon. Journal of Natural Gas Chemistry, 19(3), pp. 267-79, DOI: 10.1016/S1003-9953(09)60066-9
  18. EN 13274-3:2008. Respiratory Protective Devices. Methods of Tests. Determination of Breathing Resistance; The European Committee for Standardization (CEN): Brussels, Belgium, 2008.
  19. EN 13274-7:2008. Respiratory Protective Devices. Methods of tests. Determination of Particle Filter Penetration. The European Committee for Standardization (CEN): Brussels, Belgium, 2008.
  20. EN 14387:2004+A1:2008. Respiratory Protective Devices. Gas Filters And Combined Filters. Requirements, Testing, Marking. The European Committee For Standardization (CEN): Brussels, Belgium, 2004.
  21. EN 149:2001+A1:2009. Respiratory Protective Devices—Particle filtering half Masks—Requirements, Testing, Marking. The European Committee for Standardization (CEN): Brussels, Belgium, 2001.
  22. Haobo, T., Yan, Z., Yue, L., Ying, W. & Xuemei, W. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manage, 68, pp. 677-687, DOI: 10.1016/j.wasman.2017.07.015
  23. Hassounah, I.A., Rowland, W.C., Sparks, S.A., Orler, E.B., Joseph, E.G., Camelio, J.A. & Mahajan, R.L. (2014). Processing of Multilayerd Filament Composites by Melt Blown Spinning. Journal of Applied Polymer Science, 131, DOI: 10.1002/APP.40786
  24. Huang, Z.H., Kang, F., Zheng, Y.P., Yang, J.B. & Liang, K.M. (2002). Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon, 40, pp. 1363-1367, DOI: 10.1016/S0008-6223(01)00292-5
  25. Ki-Joong, K. & Ho-Geun, A.H.N. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Material, 152, pp. 78-83, DOI: 10.1016/j.micromeso.2011.11.051
  26. Krajewska, B. & Kośmider, J. (2005). Standards of Odour Quality Air. Air protection and Waste Issues, 6, pp. 81-191, (in Polish).
  27. Kraus, M., Trommler, U., Holzer, F., Kopinke, F.D. & Roland, U. (2018). Competing adsorption of toluene and water on various zeolites. Chemical Engineering Journal, 351, pp. 356-363, DOI: 10.1016/j.cej.2018.06.128
  28. Kumar, V., Kumar, S., Kim, K.H., Tsang, D.C.W. & Lee, S.S. (2019). Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environmental Research, 168, pp. 336-356, DOI: 10.1016/j.envres.2018.10.002
  29. Makles, Z. & Galwas-Zakrzewska, M. (2005). Malignant gases in the work environment. Work Safety, 9, pp. 12-16, (in Polish).
  30. Michalak, A., Krzeszowiak, J. & Pawlas, K. (2014). Whether exposure to unpleasant odors (odors) harms health?. Environmental Medicine, 17, pp. 76-81, (in Polish).
  31. Namieśnik, J., Gębicki, J. & Wysocka, I. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409–9434, DOI: 10.1007/s11356-019-04195-1
  32. Okrasa, M., Hitz, J., Nowak, A., Brochocka, A., Thelen, C. & Walczak, Z. (2019). Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health, 16 (11), pp. 1973, DOI: 10.3390/ijerph16111973
  33. Oya A. & Iu WG. (2002). Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon, 40(9), pp. 1391-1399, DOI: 10.1016/S0008-6223(01)00273-1
  34. Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L.A., Deng, H., Liu, J., Sun, C., Liu, H. & Snape, C.E. (2017). Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. Journal of CO2 Utilization, 22, pp. 81-90, DOI:10.1016/j.jcou.2017.09.015
  35. Pope III, CA. & Dockery, DW. (2016). Health Effects of Fine Particulate Air Pollution: Line that Connect. J Air Waste Manage, 56, pp. 709-742, DOI: 10.1080/10473289.2006.10464485
  36. Regulation (EU) 2016/425 of the European Parliament and the Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC.
  37. Regulation of the Minister for Family, Labor and Social Policy on the Highest Permissible Concentrations and Intensities of Factors Harmful to Health in the Work Environment; Journal of Laws from 2018, item 1286; International Labour Organization: Geneva, Switzerland, 12 June 2018.
  38. Rubahamya, B., Suresh Kumar Reddy, K., Prabhu, A., Al Shoaibi, A. & Srinivasakannan, C. (2019). Porous Carbon Screening for Benzene Sorption. Environmental Progress & Sustainable Energy, 38(1), pp. 93-99, DOI: 10.1002/ep.12925
  39. Rybarczyk, P., Szulczyński, B., Gębicki, J. & Hupka, J. (2019). Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 141, pp. 146-162, DOI: 10.1016/j.bej.2018.10.014
  40. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25 (9), pp. 928–939, DOI: 10.1016/j.wasman.2005.07.006
  41. Schmid, O., Möller, W., Semmler-Behnke, M.A., Ferron, G.A., Karg, E.W., Lipka, J., Schulz, H., Kreyling, W.G. & Stöeger, T. (2009). Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers, 14, pp. 67-73, DOI: 10.1080/13547500902965617
  42. Stelmach, S., Wasilewski, R. & Figa, J. (2006). An attempt to produce granular adsorbents based on carbonates from used car tires. Archives of Waste Management and Environmental Protection, 4, pp. 107-114.
  43. Szynkowska, MI., Wojciechowska, E., Węglińska, A.& Paryjczak, T. (2009). Odorous emission. An environmental protection issue. Przemysł Chemiczny, 88(6) pp. 712-720. (in Polish)
  44. Tsai, J.H., Chiang, H.M., Huang, G.Y. & Chiang, H.L. (2008). Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. Journal of Hazardous Materials, 154, pp. 1183-1191, DOI: 10.1016/j.jhazmat.2007.11.065
  45. Wang, G., Dou, B., Zhang, Z., Wang, J., Liu, H. & Hao, Z. (2015). Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon, Journal of Environmental Science, 30, pp. 65-73, DOI: 10.1016/j.jes.2014.10.015
  46. Xin, Z., Honglei, C., Fangong, K., Yujie, Z., Shoujuan, W., Shouxin, L., Lucian, A.L., Pedram, F. & Huan, P. (2019). Fabrication characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. The Chemical Engineering Journal, 364, pp. 226-243, DOI: 10.1016/j.cej.2019.01.159
  47. Xueyang, Z., Bin, G., Creamer, A.E., Chengcheng, C. & Yuncong, L. (2017). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, pp. 102-127, DOI: 10.1016/j.jhazmat.2017.05.013
  48. Yin, T., Meng, X., Jin, L., Yang, C., Liu, N. & Shi, L. (2020). Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment. Microporous and Mesoporous Materials, 305, pp. 110327, DOI:10.1016/j.micromeso.2020.110327
  49. Yue, Z. & Vakili, A. (2017). Activated carbon–carbon composites made of pitch-based carbon fibers and phenolic resin for use of adsorbents. Journal of Material Science, 52, pp. 12913-12921, DOI:10.1007/s10853-017-1389-7
  50. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87–96, DOI:10.24425/118185
  51. Zhang, H., Liu, J., Zhang, X. & Jin, X. (2018). Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Advences, 8, pp. 7932-7941, DOI: 10.1039/c7ra10916d
  52. Zhang, X., Gao, B., Zheng, Y., Hu, X., Creamer, A.E., Annable, M.D. & Li, Y. (2017). Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology, 245, pp. 606-614, DOI: 10.1016/j.biortech.2017.09.025
Go to article

Authors and Affiliations

Agnieszka Brochocka
1
Aleksandra Nowak
1
Rafał Panek
2
Paweł Kozikowski
1
Wojciech Franus
2

  1. Central Institute for Labour Protection-National Research Institute, Lodz, Poland
  2. Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Filtration through biologically active carbon (BAC) filters is an effective method of organic matter removal during drinking water treatment. In this study, the microbial community in the initial period of filters’ operation, as well as its role in the organic matter removal were investigated. Research was carried out in a pilot scale on two BAC filters (Filter 1 and Filter 2) which were distinguished by the type of inflowing water. It was observed that the number of heterotrophic plate count bacteria and total microbial activity were significantly higher in water samples collected from Filter 2, which received an additional load of organic matter and microorganisms. Despite the differences in the values of chemical and microbiological parameters of inflowing water, the composition of the microbiome in both filters was similar. The predominant taxon was a bacterium related to Spongiibacter sp. (Gammaproteobacteria) (>50% of relative abundance). In both filters, the efficiency of organic matter removal was at the same level, and the composition and relative frequency of predicted functional pathways related to metabolism determined using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States Software) at level 3 of KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology – were also similar. The study demonstrated that a 40-day period of filter operation after filling with virgin granular activated carbon, was sufficient to initiate biofilm development. It was proved, that during the initial stage of filter operation, microorganisms capable of biodegradation of various organic compounds, including xenobiotics like nitrotoluene, colonized the filters
Go to article

Bibliography

  1. APHA (2017). Standard Methods for the Examination of Water and Wastewater, (23st ed.) American Public Health Association, Washington DC.
  2. Chan, S., Pullerits, K., Keucken, A., Persson, K.M., Paul, C.J. & Rådström, P. (2019). Bacterial release from pipe biofilm in a full-scale drinking water distribution system, NPJ Biofilms Microbiomes, 5, 9. DOI:10.1038/s41522-019-0082-9
  3. Choi, Y.C., Li, X., Raskin, L. & Morgenroth, E. (2008). Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors, Water Research, 42, pp. 3425–3434. DOI:10.1016/j.watres.2008.05.004
  4. Dong, S., Liu, L., Zhang, Y. & Jiang, F. (2019). Occurrence and succession of bacterial community in O3/BAC process of drinking water treatment, International Journal of Environmental Research and Public Health, 16, 3112. DOI:10.3390/ijerph16173112
  5. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C. & Langille, M.G.I. (2020). PICRUSt2 for prediction of metagenome functions, Nature Biotechnology, 38, pp. 685–688. DOI:10.1038/s41587-020-0548-6
  6. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, 10, pp. 996–998. DOI:10.1038/nmeth.2604
  7. Garrity, G.M. (Ed.) 2005. Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C, The Alpha- Beta-, Delta- and Epsilonproteobacteria, Springer, New York, pp. 1-1388. DOI:10.1007/0-387-29298-5
  8. Guo, X., Xie, C., Wang, L., Li, Q. & Wang, Y. (2019). Biodegradation of persistent environmental pollutants by Arthrobacter sp., Environmental Science and Pollution Research, 26, pp. 8429–8443. DOI:10.1007/s11356-019-04358-0
  9. Hayward, C., Ross, K.E., Brown, M.H., Bentham, R. & Whiley, H. (2022) The presence of opportunistic premise plumbing pathogens in residential buildings: a literature review, Water, 14, 1129. DOI:10.3390/w14071129
  10. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. & Minghim, R. (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, 16, 169. DOI:10.1186/s12859-015-0611-3
  11. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski, Z. (2016). Effectiveness of Organic Compounds Removing During Water Treatment by Filtration Through a Biologically Active Carbon Filter with the Identification of Microorganisms, Annual Set The Environment Protection, 18, pp. 235–246 (in Polish), available on: http://ros.edu.pl/images/roczniki/2016/No2/17_ROS_N2_V18_R2016.pdf
  12. Holc, D., Mądrecka-Witkowska, B., Komorowska-Kaufman, M., Szeląg-Wasielewska, E., Pruss, A. & Cybulski, Z. (2021). The application of different methods for microbial development assessment in pilot scale drinking water biofilters, Archives of Environmental Protection, 47, 3, pp. 37-49. DOI:10.24425/aep.2021.138462
  13. Holc, D., Pruss, A., Komorowska-Kaufman, M., Mądrecka, B. & Cybulski, Z. (2019). The sorption of organic compounds from water during technological start-up of carbon filters, E3S Web Conferences, 100, 00027. DOI:10.1051/e3sconf/201910000027
  14. IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans. (2012). Some chemicals present in industrial and consumer products, Food And Drinking-Water, 101, 9-549.
  15. Jean, W.D., Yeh, Y.T., Huang, S.P., Chen, J.S. & Shieh, W.Y. (2016). Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 4094–4098. DOI:10.1099/ijsem.0.001316
  16. Jin, L., Ko, S.R., Ahn, C.Y., Lee, H.G. & Oh, H.M. (2016). Rhizobacter profundi sp. nov., isolated from freshwater sediment, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 1926-1931. DOI:10.1099/ijsem.0.000962
  17. Kaarela, O.E., Harkki, H.A., Palmroth, M.R.T. & Tuhkanen, T.A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, pp. 681-692. DOI:10.1080/09593330.2014.958542
  18. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms, Nucleic Acids Research, 49, D545–D551. DOI:10.1093/nar/gkaa970
  19. Kennedy, A.M., Reinert, A.M., Knappe, D.R.U., Ferrer, I. & Summers R.S. (2015). Full- and pilot-scale GAC adsorption of organic micropollutants, Water Research, 68, pp. 238-248. DOI:10.1016/j.watres.2014.10.010
  20. Khan M.F., Jamal A., Rosy P. J., Alguno A.C., Ismail M., Khan I., Ismail, A. & Zahid, M. (2022). Eco-friendly elimination of organic pollutants from water using graphene oxide assimilated magnetic nanoparticles adsorbent, Inorganic Chemistry Communications, 139, 109422. DOI:10.1016/j.inoche.2022.109422
  21. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138. DOI:10.1016/j.chemosphere.2016.09.097
  22. Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nature Biotechnology, 31, pp. 814–821. DOI:10.1038/nbt.2676
  23. LaPara, T.M., Hope Wilkinson, K., Strait, J.M., Hozalski, R.M., Sadowksy, M.J &, Hamilton, M.J. (2015). The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms, Applied and Environmental Microbiology, 81, pp. 6864-6872. DOI:10.1128/AEM.01692-15
  24. Li, C., Ling, F., Zhang, M., Liu, W.T., Li, Y. & Liu, W. (2017). Characterization of bacterial community dynamics in a full-scale drinking water treatment plant, Journal of Environmental Sciences, 51, pp. 21-30. DOI:10.1016/j.jes.2016.05.042
  25. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012). Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886. DOI:10.1007/s12257-012-0127-x
  26. Liao, X., Chen, C., Wang, Z., Chang, C.-H., Zhang, X. & Xie, S. (2015). Bacterial community change through drinking water treatment processes, International Journal of Environmental Science and Technology, 12, pp. 1867-1874. DOI:10.1007/s13762-014-0540-0
  27. Liao, X., Chen, C., Wang, Z., Wan, R., Chang, C.-H. & Zhang, X. (2013). Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochemistry, 48, pp. 312-316. DOI:10.1016/j.procbio.2012.12.016
  28. Liu, G., Zhang, Y., van der Mark, E., Magic-Knezev, A., Pinto, A., van den Bogert, B., Liu, W., van der Meer, W. & Medema, G. (2018). Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints, Water Research, 138, pp. 86-96. DOI:10.1016/j.watres.2018.03.043
  29. Ma, B., LaPara, T.M. & Hozalski, R.M. (2020). Microbiome of Drinking Water Biofilters is Influenced by Environmental Factors and Engineering Decisions but has Little Influence on the Microbiome of the Filtrate, Environmental Science & Technology, 54, pp. 11526-11535. DOI:10.1021/acs.est.0c01730
  30. Makowska, N., Philips, A., Dabert, A., Nowis, K., Trzebny, A., Koczura, R. & Mokracka, J. (2020). Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome, Water Research, 170, 115277. DOI:10.1016/j.watres.2019.115277
  31. Matilainen, A., Vieno N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International, 32, pp. 324-331. DOI:10.1016/j.envint.2005.06.003
  32. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc, D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds, in: Water Supply and Wastewater Disposal, Sobczuk, H. & Kowalska, B. (Eds.), Lublin University of Technology, Lublin, pp.163-177
  33. Magic-Knezev, A., Wullings, B. & Van der Kooij, D. (2009). Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment, Journal of Applied Microbiology, 107, pp. 1457-1467. DOI:10.1111/j.1365-2672.2009.04337.x
  34. Matsis, V. M. & Grigoropoulou, H.P. (2008). Kinetics and equilibrium of dissolved oxygen adsorption on activated carbon, Chemical Engineering Science, 63, pp. 609-621. DOI:10.1016/j.ces.2007.10.005
  35. Oh, S., Hammes, F. & Liu, W.T. (2018). Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant, Water Research, 128, pp. 278-285. DOI:10.1016/j.watres.2017.10.054
  36. Papciak, D., Kaleta, J., Puszkarewicz, A. & Tchorzewska-Cieślak, B. (2016). The use of biofiltration process to remove organic matter from groundwater, Journal of Ecological Engineering, 17, pp. 119-124. DOI:10.12911/22998993/63481
  37. PN-C-04578-02:1985 Water and wastewater - Testing of oxygen demand and organic carbon content - Determination of chemical oxygen demand (COD) by the permanganate method. (in Polish)
  38. Qi, W., Li, W., Zhang, J. & Zhang, W. (2019). Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community, Frontiers of Environmental Science & Engineering, 13, 15. DOI:10.1007/s11783-019-1100-0
  39. Rosenberg, E., DeLong E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), (2014). The Prokaryotes. Alphaproteobacteria and Betaproteobacteria. (4rd ed.), Springer, Berlin, Heidelberg. pp. 3-1012. DOI:10.1007/978-3-642-30197-1
  40. Dos Santos, P.R. & Daniel, L.A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment, International Journal of Environmental Science and Technology, 17, pp. 591-606. DOI:10.1007/s13762-019-02567-1
  41. Selbes, M., Brown, J., Lauderdale, C. & Karanfil, T. (2017). Removal of Selected C‐ and N‐DBP Precursors in Biologically Active Filters, Journal ‐ American Water Works Association, 109: E73-E84. DOI:10.5942/jawwa.2017.109.0014
  42. Servais, P., Billen, G. & Bouillot, P. (1994). Biological colonization of granular activated carbon filters in drinking-water treatment, Journal of Environmental Engineering, 120, 4, pp. 888-899. DOI:10.1061/(ASCE)0733-9372(1994)120:4(888)
  43. Shirey, T.B., Thacker, R.W. & Olson, J.B. (2012). Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility, Journal of Water and Health, 10, pp. 244–255. DOI:10.2166/wh.2012.092
  44. Simpson, D.R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, pp. 2839-2848. DOI:10.1016/j.watres.2008.02.025
  45. Su, H.-C., Liu, Y.-S., Pan C.-G., Chen, J., He, L.-Y. & Ying, G.-G. (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water, Science of the Total Environment, 616–617, pp. 453-461. DOI:10.1016/j.scitotenv.2017.10.318
  46. Velten, S., Boller, M., Köster, O., Helbing, J., Weilenmann, H.U. & Hammes, F. (2011). Development of biomass in a drinking water granular active carbon (GAC) filter, Water Research 45, pp. 6347-6354. DOI:10.1016/j.watres.2011.09.017
  47. Vignola, M., Werner,D., Wade, M.J., Meynet, P. & Davenport, R.J. (2018). Medium shapes the microbial community of water filters with implications for effluent quality, Water Research, 129, pp. 499-508. DOI:10.1016/j.watres.2017.09.042.
  48. Waak, M.B., Hozalski, R.M., Hallé, C. & LaPara, T.M. (2019). Comparison of the microbiomes of two drinking water distribution systems - with and without residual chloramine disinfection, Microbiome, 7, 87. DOI:10.1186/s40168-019-0707-5
  49. White, C.P., Debry, R.W. & Lytle, D.A. (2012). Microbial survey of a full-scale, biologically active filter for treatment of drinking water, Applied and Environmental Microbiology, 78, pp. 6390-6394. DOI:10.1128/AEM.00308-12
  50. Yapsakli, K. & Çeçen, F. (2010). Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochemistry, 45, pp. 355-362. DOI:10.1016/j.procbio.2009.10.005
Go to article

Authors and Affiliations

Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Alina Pruss
1
ORCID: ORCID
Dorota Holc
1
ORCID: ORCID
Artur Trzebny
2
ORCID: ORCID
Miroslawa Dabert
2
ORCID: ORCID

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poznań, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Poznań, Poland

This page uses 'cookies'. Learn more