Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Noise reduction inside waveguide systems has gained momentum owing to a great interest in it. To attenuate the sound in a broad frequency range, this study aims to compare the effects of two acoustic liners, a perforated plate backed by an air cavity (PP-Air cavity), or by a porous material (PP-PM), on the acoustic behaviour of lined ducts using a numerical model to compute the multimodal scattering matrix. From this matrix, the reflection and the transmission coefficients are computed and therefore the acoustic power attenuation is deduced. Moreover, the effects of geometry of ducts with and without changes in the section are investigated. The numerical results are obtained for five configurations, including cases of narrowing and widening of a duct portion with sudden or progressive discontinuities. Accordingly, numerical coefficients of reflection and transmission as well as the acoustic power attenuation show the relative influence of acoustic liners in each type of configuration.

Go to article

Authors and Affiliations

Amine Makni
Mohamed Taktak
Mabrouk Chaabane
Mohamed Haddar
Download PDF Download RIS Download Bibtex

Abstract

Lined ducts with porous materials are found in many industrial applications. To understand and simulate the acoustic behaviour of these kinds of materials, their intrinsic physical parameters must be identified. Recent studies have shown the reliability of the inverse approach for the determination of these parameters. Therefore, in the present paper, two inverse techniques are proposed: the first is the multilevel identification method based on the simplex optimisation algorithm and the second one is based on the genetic algorithm. These methods are used of the physical parameters of a simulated case of a porous material located in a duct by the computation of its acoustic transfer, scattering, and power attenuation. The results obtained by these methods are compared and discussed to choose the more efficient one.
Go to article

Bibliography

1. Alba J., delRey R., Ramis J., Arenas J.P. (2011), An inverse method to obtain porosity, fiber diameter and density of fibrous sound absorbing materials, Archives of Acoustics, 36(3): 561–574, doi: 10.2478/v10168-011-0040-x.
2. Allard J.F., Attalla N. (2009), Propagation of Sound in Porous Media, Wiley.
3. Allard J.F., Champoux Y. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, The Journal of the Acoustical Society of America, 91(6): 3346–3353, doi: 10.1121/1.402824.
4. Attalla Y., Panneton R. (2005), Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, 33(1): 11–24.
5. Attenborough K. (1983), Acoustical characteristics of rigid porous absorbents and granular materials, The Journal of the Acoustical Society of America, 73(3): 85–99, doi: 10.1121/1.389045.
6. Attenborough K. (1987), On the acoustic slow wave in air-filled granular media, The Journal of the Acoustical Society of America, 81(1): 93–102, doi: 10.1121/1.394938.
7. Benjdidia M., Akrout A., Taktak M., Hammami L., Haddar M. (2014), Thermal effect on the acoustic behavior of an axisymmetric lined duct, Applied Acoustics, 86: 138–145, doi: 10.1016/j.apacoust.2014.03.004.
8. Ben Souf M.A., Kessentini A., Bareille O., Taktak M., Ichchou M.N., Haddar M. (2017), Acoustical scattering identification with local impedance through a spectral approach, Compte Rendus Mécanique, 345(5): 301–316, doi: 10.1016/j.crme.2017.03.006.
9. Bérengier M., Stinson M.R., Daigle G.A., Hamet J.F. (1997), Porous road pavements: acoustical characterization and propagation effects, The Journal of the Acoustical Society of America, 101(1): 155–162, doi: 10.1121/1.417998.
10. Chazot J.D., Zhang E., Antoni J. (2012), Characterization of poroelastic materials with a Bayesian approach, The Journal of the Acoustical Society of America, 131(6): 4584–4595, doi: 10.1121/1.3699236.
11. Delany M.E., Bazley E.N. (1970), Acoustical properieties of fibrous absorbent materials, Applied Acoustics, 3: 105–116, doi: 10.1016/0003-682X(70)90031-9.
12. Dhief R., Makni A., Taktak M., Chaabane M., Haddar M. (2020), Investigation on the effects of acoustic liner variation and geometry discontinuities on the acoustic performance of lined ducts, Archives of Acoustics, 45(1): 49–66, doi: 10.24425/aoa.2020.132481.
13. Garoum M., Simon F. (2005), Characterization of non-consolidated cork crumbs as a basic sound absorber raw material, [in:] 12th International Congress on Sound and Vibration, Lisbon, Portugal.
14. Garoum M., Tajayouti M. (2007), Inverse estimation of non acoustical parameters of absorbing materials using genetic algorithms, [in:] 19th International Congress on Acoustics, Madrid, Spain.
15. Goldberg D. (1989), Genetic Algorithms for Search, Optimization and Machine Learning, Addison-Wesley, Reading. 16. Hamet J.F., Bérengier M. (1993), Acoustical characteristics of porous pavements – a new phenomenological model, [in:] Inter-Noise ‘93, Leuven, Belgium.
17. Hentati T., Bouazizi L., Taktak M., Trabelsi H., Haddar M. (2016), Multi-levels inverse identification of physical parameters of porous materials, Applied Acoustics, 108: 26–30, doi: 10.1016/j.apacoust.2015.09.013.
18. Hess H.M., Attenborough K., Heap N.W. (1990), Ground characterization by short-range propagation measurements, The Journal of the Acoustical Society of America, 87(5): 1975–1986, doi: 10.1121/1.399325.
19. Johnson D.L., Koplik J., Dashen R. (1987), Theory of dynamic permeability and tortuosity in fluidsaturated porous media, Journal of Fluid Mechanics, 176: 379–402, doi: 10.1017/S0022112087000727.
20. Kani M. et al. (2019), Acoustic performance evaluation for ducts containing porous material, Applied Acoustics, 147: 15–22, doi: 10.1016/j.apacoust.2018.08.002.
21. Kessentini A.,Taktak M., Ben Souf M.A., Bareille O., Ichchou M.N., Haddar M. (2016), Computation of the scattering matrix of guided acoustical propagation by the Wave Finite Elements approach, Applied Acoustics, 108: 92–100, doi: 10.1016/j.apacoust.2015.09.004.
22. Lafarge D., Lemarinier P., Allard J.F. (1997), Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America, 102(4): 1995–2006, doi: 10.1121/1.419690.
23. Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. (1998), Convergence properties of the Nelder- Mead Simplex method in low dimensions, SIAM Journal of optimization, 9(1): 112–147, doi: 10.1137/S1052623496303470.
24. Leclaire P., Kelders L., Lauriks W., Melon M., Brown N., Castagnède B. (1996), Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air, Journal of Applied Physics, 80(4): 2009–2012, doi: 10.1063/1.363817.
25. Mareze P.H., Lenzi A. (2011), Characterization and optimization of rigid – frame porous material, [in:] 18th International Congress on Sound and Vibration, Rio De Janeiro, Brazil.
26. Masmoudi A., Makni A., Taktak M., Haddar M. (2017), Effect of geometry and impedance variation on the acoustic performance of a porous material lined duct, Journal of Theoretical and Applied Mechanics, 55(2): 679–694, doi: 10.15632/jtam-pl.55.2.679.
27. Miki Y. (1990), Acoustical properties of porous materials – modifications of Delany-Bazley models, Journal of the Acoustical Society of Japan, 11(1): 19–24, doi: 10.1250/ast.11.19.
28. Othmani C., Hentati T., Taktak M., Elnady T., Fakhfakh T., Haddar M. (2015), Effect of liner characteristics on the acoustic performance of duct systems, Archives of Acoustics, 40(1): 117–127, doi: 10.1515/aoa-2015-0014.
29. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027–2040, doi: 10.1121/1.2169923.
30. Sellen N., Galland M.A., Hilberunner O. (2020), Identification of the characteristic parameters of porous media using active control, [in:] 8th AIAA/CEAS Aeroacoustics Conference, USA.
31. Shravage P., Bonfiglio P., Pompoli F. (2008), Hybrid inversion technique for predicting geometrical parameters of porous materials, [in:] Acoustics’ 08, Paris, France, pp. 2545–2549.
32. Taktak M., Ville J.M., Haddar M., Gabard G., Foucart F. (2010), An indirect method for the characterization of locally reacting liners, The Journal of the Acoustical Society of America, 127(6): 3548–3559, doi: 10.1121/1.3365250.
33. Ying H. (2010), Development of passive/active hybrid panels for acoustics [in French: Développement de panneaux hybrides passifs/actifs pour l’acoustique], Phd Thesis, Ecole Centrale de Lyon.
34. Zielinski T.G. (2012), Inverse identification and microscopic estimation of parameters for models of sound absorption in porous ceramics, [in:] International Conference on Noise and Vibration Engineering/International Conference on Uncertainty in Structural Dynamics, 17–19 September, Leuven, Belgium.
35. Zielinski T.G. (2014), A methodology for a robust inverse identification of model parameters for porous sound absorbing materials, [in:] International Conference on Noise and Vibration Engineering/International Conference on Uncertainty in Structural Dynamics, 15–17 September, Leuven, Belgium.
Go to article

Authors and Affiliations

Kani Marwa
1 2
Amine Makni
1
Mohamed Taktak
1 2
Mabrouk Chaabane
2
Mohamed Haddar
1

  1. Laboratory of Mechanics, Modeling and Productivity (LA2MP), National School of Engineers of Sfax, University of Sfax, Tunisia
  2. Faculty of Sciences of Sfax, University of Sfax, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

When studying porous materials, most acoustical and geometrical parameters can be affected by the presence of uncertainties, which can reduce the robustness of models and techniques using these parameters. Hence, there is a need to evaluate the effect of these uncertainties in the case of modeling acoustic problems. Among these evaluation methods, the Monte Carlo simulation is considered a benchmark for studying the propagation of uncertainties in theoretical models. In the present study, this method is applied to a theoretical model predicting the acoustic behavior of a porous material located in a duct element to evaluate the impact of each input error on the computation of the acoustic proprieties such as the reflection and transmission coefficients as well as the acoustic power attenuation and the transmission loss of the studied element. Two analyses are conducted; the first one leads to the evaluation of the impacts of error propagation of each acoustic parameter (resistivity, porosity, tortuosity, and viscous and thermal length) through the model using a Monte Carlo simulation. The second analysis presents the effect of propagating the uncertainties of all parameters together. After the simulation of the uncertainties, the 95% confidence intervals and the maximum and minimum errors of each parameter are computed. The obtained results showed that the resistivity and length of the porous material have a great influence on the acoustic outputs of the studied model (transmission and reflection coefficients, transmission loss, and acoustic power attenuation). At the same time, the other physical parameters have a small impact. In addition, the acoustic power attenuation is the acoustic quantity least impacted by the input uncertainties.
Go to article

Authors and Affiliations

Hanen Hannachi
1 2
Hassen Trabelsi
1
Marwa Kani
1 2
Mohamed Taktak
3 4
Mabrouk Chaabane
2
Mohamed Haddar
2

  1. Laboratory of Mechanics, Modeling and Productivity (LA2MP), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  2. Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
  3. Laboratory of Mechanics, Modeling and Productivity (LA2MP), National School of Engineers of Sfax, University of Sfax, Tunisia
  4. Faculty of Sciences of Sfax, University of Sfax, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

Image-guided High Intensity Focused Ultrasound (HIFU) technique is dynamically developing technology for treating solid tumors due to its non-invasive nature. Before a HIFU ablation system is ready for use, the exposure parameters of the HIFU beam capable of destroying the treated tissue without damaging the surrounding tissues should be selected to ensure the safety of therapy. The purpose of this work was to select the threshold acoustic power as well as the step and rate of movement of the HIFU beam, generated by a transducer intended to be used in the HIFU ablation system being developed, by using an array of thermocouples and numerical simulations. For experiments a bowl-shaped 64-mm, 1.05 MHz HIFU transducer with a 62.6 mm focal length (f-number 0.98) generated pulsed waves propagating in two-layer media: water/ex vivo pork loin tissue (50 mm/40 mm) was used. To determine a threshold power of the HIFU beam capable of creating the necrotic lesion in a small volume within the tested tissue during less than 3 s each tissue sample was sonicated by multiple parallel HIFU beams of different acoustic power focused at a depth of 12.6 mm below the tissue surface. Location of the maximum heating as well as the relaxation time of the tested tissue were determined from temperature variations recorded during and after sonication by five thermo-couples placed along the acoustic axis of each HIFU beam as well as from numerical simulations. The obtained results enabled to assess the location of each necrotic lesion as well as to determine the step and rate of the HIFU beam movement. The location and extent of the necrotic lesions created was verified using ultrasound images of tissue after sonication and visual inspection after cutting the samples. The threshold acoustic power of the HIFU beam capable of creating the local necrotic lesion in the tested tissue within 3 s without damaging of surrounding tissues was found to be 24 W, and the pause between sonications was found to be more than 40 s.

Go to article

Authors and Affiliations

Łukasz Fura
Tamara Kujawska
Download PDF Download RIS Download Bibtex

Abstract

Duct silencers provide effective noise reduction for heating, ventilation and air conditioning systems. These silencers can achieve an excellent sound attenuation through the attributes of their design. The reactive silencer works on the principle of high reflection of sound waves at low frequencies. On the other hand, the dissipative silencer works on the principle of sound absorption, which is very effective at high-frequencies. Combining these two kinds of silencers allowed covering the whole frequency range. In this paper, the effect of liner characteristics composed of a perforated plate backed by a porous material and geometry discontinuities on the acoustic power attenuation of lined ducts is evaluated. This objective is achieved by using a numerical model to compute the multimodal scattering matrix, thus allowing deducing the acoustic power attenuation. The numerical results are obtained for six configurations, including cases of narrowing and widening of a radius duct with sudden or progressive discontinuities. Numerical acoustic power attenuation shows the relative influence of the variation in the values of each parameter of the liner, and of each type of radius discontinuities of ducts.
Go to article

Authors and Affiliations

Dhouha Tounsi
1
Wafa Taktak
2
Raja Dhief
1 3
Mohamed Taktak
1 3
Mabrouk Chaabane
3
Mohamed Haddar
1

  1. Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  2. National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  3. Faculty of Sciences of Sfax, Sfax, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

This study presents an analysis of the effect of the concentrated mass on the acoustic power and the resonant frequencies of a vibrating thin circular plate. The fluid-structure interactions and the acoustic wave radiation effect have been included. The eigenfunction expansion has been used to express the transverse displacement of the plate. The appropriate number of modes is determined approximately to achieve physically correct results. Then highly accurate results are obtained numerically. The radiated acoustic power has been used to determine the resonant frequencies. The introducing of the concentrated mass is justified by modelling the added mass of the moving component of the exciter.
Go to article

Authors and Affiliations

Wojciech P. Rdzanek
1
Krzysztof Szemela
1

  1. University of Rzeszow, College of Natural Sciences, Institute of Physics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two vibrating circular membranes radiate acoustic waves into the region bounded by three infinite baffles arranged perpendicularly to one another. The Neumann boundary value problem has been investigated in the case when both sources are embedded in the same baffle. The analyzed processes are time harmonic. The membranes vibrate asymmetrically. External excitations of different surface distributions and different phases have been applied to the sound sources’ surfaces. The influence of the radiated acoustic waves on the membranes’ vibrations has been included. The acoustic power of the sound sources system has been calculated by using a complete eigenfunctions system.

Go to article

Authors and Affiliations

Wojciech P. Rdzanek
Krzysztof Szemela
Witold J. Rdzanek

This page uses 'cookies'. Learn more