Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the combined effect of Zr and Si on isothermal oxidation of Ti for 25 and 50 h at 820°C, which is the temperature related to exhaust valves operation, was investigated. Si addition into Ti-5mass%Zr alloy led to a distribution of silicide Ti5Si3 phase formed by a eutectic reaction. The Ti sample containing only Zr showed more retarded oxidation rate than Ti-6Al-4V, the most prevalent Ti alloy, at the same condition. However, while a simultaneous addition of Zr and Si resulted in greater increase of oxidation resistance. The oxide layer formed after the addition of Zr and Si comprised TiO2, ZrO2, and SiO2.

Go to article

Authors and Affiliations

S.-H. Ha
B.-H. Kim
Y.-O. Yoon
H.-K. Lim
S.K. Kim
Download PDF Download RIS Download Bibtex

Abstract

Isothermal hot compression experiments were carried out using the Gleeble-1500D thermal mechanical simulator. The flow stress of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys was studied at hot deformation temperature of 550°C, 650°C, 750°C, 850°C, 900°C and the strain rate of 0.001 s–1, 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1. Hot deformation activation energy and constitutive equations for two kinds of alloys with and without yttrium addition were obtained by correlating the flow stress, strain rate and deformation temperature. The reasons for the change of hot deformation activation energy of the two alloys were analyzed. Dynamic recrystallization microstructure evolution for the two kinds of alloys during hot compression deformation was analyzed by optical and transmission electron microscopy. Cu-1%Zr and Cu-1%Zr-0.15%Y alloys exhibit similar behavior of hot compression deformation. Typical dynamic recovery occurs during the 550-750°C deformation temperature, while dynamic recrystallization (DRX) occurs during the 850-900°C deformation temperature. High Zr content and the addition of Y significantly improved Cu-1%Zr alloy hot deformation activation energy. Compared with hot deformation activation energy of pure copper, hot deformation activation energy of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys is increased by 54% and 81%, respectively. Compared with hot deformation activation energy of the Cu-1%Zr alloy, it increased by 18% with the addition of Y. The addition of yttrium refines grain, advances the dynamic recrystallization critical strain point and improves dynamic recrystallization.
Go to article

Authors and Affiliations

K. Tian
B. Tian
A.A. Volinsky
Y. Zhang
Y. Liu
Y. Du
Download PDF Download RIS Download Bibtex

Abstract

A Cu-1Cr-0.1Zr alloy has been subjected to ECAP processing via route Bc and aging at 250-800°C. Electron BackScatter diffraction (EBSD), Transmission Electron Microscopy (TEM) and X-Ray Diffraction Line Profile Analysis (XRDLPA) techniques have been used to unveil some peculiarities of the grain and subgrain structure with a special emphasis on the comparison of the grain size estimated by the three techniques. For the alloy ECAP processed and aged up to 16 passes, the grain size (from EBSD, 0.2 < d < 5 μm), subgrain size (from TEM, d ~ 0.75 μm) and “apparent” average crystallite size (from XRDLPA, d < 0.25 μm) are manifestly different. The results were compared to the published data and analyzed based on the fundamental aspects of these techniques.
Go to article

Authors and Affiliations

K. Abib
1
ORCID: ORCID
B. Alili
1
ORCID: ORCID
T. Baudin
2
ORCID: ORCID
A.-L. Helbert
2
ORCID: ORCID
F. Brisset
2
ORCID: ORCID
L. Litynska-Dobrzynska
3
ORCID: ORCID
P. Zieba
3
ORCID: ORCID
D. Bradai
1
ORCID: ORCID

  1. University Of Sciences And Technology Houari Boumediene, Faculty Of Physics, Bp 32 El Alia, Bab Ezzouar, Algiers, Algeria
  2. University Paris-Saclay, Icmmo, 91405, Orsay, France
  3. Institute Of Meta llurgy And Mat erials Science, Polish Academy Of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types - one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3 catalyst modified with zirconium has the highest application potential in methanol synthesis.

Go to article

Authors and Affiliations

Stanisław Ledakowicz
Lech Nowicki
Jerzy Petera
Jarosław Nizioł
Paweł Kowalik
Andrzej Gołębiowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of ZrO2 layer deposition by the ALD process on the physicochemical properties of cobalt-based alloys (Realloy C and EOS CoCr SP2) intended for application in prosthetic dentistry. The paper shows the results of the surface roughness measurements made by the AFM method as well as the wettability and free surface energy measurements. Additionally,potentiodynamic tests of pitting corrosion resistance and electrochemical impedance spectroscopy in a solution of artificial saliva were carried out. Tests were carried out on the samples in the initial state and after surface modification with the ZrO2 layer. Based on these results, the usefulness (e.g. enhancement of corrosion resistance and biocompatibility) of the proposed ZrO2 layer on the cobalt alloys was assessed.

Go to article

Authors and Affiliations

A. Ziębowicz
A. Woźniak
B. Ziębowicz
K. Kosiel
G. Chladek
Download PDF Download RIS Download Bibtex

Abstract

The half-metallic, mechanical, and transport properties of the quaternary Heusler compound of PdZrTiAl is discussed under hydrostatic pressures in the range of –11.4 GPa to 18.4 GPa in the framework of the density functional theory (DFT) and Boltzmann quasi-classical theory using the generalization gradient approximation (GGA). By applying the stress, the band gap in the minor spin increases so that the lowest band is obtained 0.25 eV at the pressure of –11.4 GPa while the maximum gap is calculated 0.9 eV at the pressure of 18.4 GPa. In all positive and negative pressures, the PdZrTiAl composition exhibits a half-metallic behavior 100% spin polarization at the Fermi level. It is also found that applying stress increases the Seebeck coefficient in both spin directions. In the minority spin, the n-type PdZrTiAl, the power factor (PF) for all the cases is greater in the equilibrium state than the strain and stress conditions whereas in the majority spin, the PF value of the stress state is greater than the other two. The non-dimensional figure of merit (ZT) is significant and is about one in spin down in the room temperature for the all pressure states that it remains on this value by applying pressure. The obtained elastic constants indicate that the PdZrTiAl crystalline structure has a mechanical stability. Based on the Yong (E), Bulk (B) and shear (G) modulus and Poisson (n) ratio, the brittle-ductile behavior of this compound has been investigated under pressure. The results indicate that PdZrTiAl has a ductile nature and it is a stiffness compound in which elastic and mechanical instability increases by applying strain.

Go to article

Authors and Affiliations

S. Parsamehr
A. Boochani
E. Sartipi
M. Amiri
S. Solaymani
S. Naderi
A. Aminian
Download PDF Download RIS Download Bibtex

Abstract

The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
Go to article

Authors and Affiliations

Sylwia Przybysz
1
Mariusz Kulczyk
1
ORCID: ORCID
Jacek Skiba
1
Monika Skorupska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Dynamic charge carrier transport behavior in the zirconium (Zr) oxide was investigated based on the frequency-dependent capacitance-voltage (C-V) and temperature-dependent current-voltage (I-V) measurements. The Zr oxide was formed on the ZIRLO and newly developed zirconium-based alloy (NDZ) by corrosion in the PWR-simulated loop at 360°C. The corrosion test for 90 days showed that the NDZ exhibits better corrosion resistance than ZIRLO alloy. Based on the C-V measurement, dielectric constant values for the Zr oxide was estimated to be 11.28 and 11.52 for the ZIRLO and NDZ. The capacitance difference between low and high frequency was larger in the ZIRLO than in the NDZ, which was attributed to more mobile electrical charge carriers in the oxide layer on the ZIRLO alloy. The current through the oxide layers on the ZIRLO increased more drastically with increasing temperature than on the NDZ, which indicating that more charge trap sites exist in the ZIRLO than in NDZ. Based on the dynamic charge carrier transport behavior, it was concluded that the electrical charge carrier transport within the oxide layers was closely related with the corrosion behavior of the Zr alloys.

Go to article

Authors and Affiliations

Il-Kyu Park
Sang-Seok Lee
Yong Kyoon Mok
Chan-Woo Jeon
Hyun-Gil Kim
Download PDF Download RIS Download Bibtex

Abstract

Metallic fuel slugs containing rare-earth (RE) elements have high reactivity with quartz (SiO2) molds, and a reaction layer with a considerable thickness is formed at the surface of metallic fuel slugs. The surface characterization of metallic fuel slugs is essential for safety while operating a fast reactor at elevated temperature. Hence, it is necessary to evaluate the surface characteristics of the fuel slugs so that chemical interaction between fuel slug and cladding can be minimized in the reactor. When the Si element causes a eutectic reaction with the cladding, it deteriorates the metallic fuel slugs. Thus, it is necessary to examine the characteristics of the surface reaction layer to prevent the reaction of the metallic fuel slugs. In this study, we investigated the metallurgical characteristics of the surface reaction layer of fabricated U-10wt.%Zr-Xwt.%RE (X = 0, 5, 10) fuel slugs using injection casting. The results showed that the thickness of the surface reaction layer increased as the RE content of the metallic fuel slugs increased. The surface reaction layer of the metallic fuel slug was mainly formed by RE, Zr and the Si, which diffused in the quartz mold.
Go to article

Authors and Affiliations

Mun Seung-Uk
Kim Ki-Hwan
Oh Seok-Jin
Park Jeong-Young
Hong Sun-Ig
Download PDF Download RIS Download Bibtex

Abstract

In this study, the modification mechanism and growth process of Al3(Sc, Zr) particles in as-cast Al-Si-Mg-Cu based alloy with addition of Sc and Zr were systematically investigated. It was found that 0.57 wt-%Sc addition caused a significant refinement in the average grain size of the investigated alloy, which brought about a remarkable transformation in as-cast microstructure, from thick dendritic shape to fine equiaxed structure. A large amount of primary Al3(Sc, Zr) particles with the dimension of around 5-6 μm were also observed within the equiaxed grain. Due to the identical orientation and similar crystal structure between primary Al3(Sc, Zr) particles and α-Al matrix, the primary particles always served as heterogeneous nucleus for the α-Al matrix. In addition, these cusped cubic primary Al3(Sc, Zr) particles showed triangle, star, rhomboid morphologies are generated from sectioning the particle in (111), (100) and (110) planes, respectively. Particularly, the typical eutectic structure which contained odd number-layer (Al3(Sc, Zr)+α-Al+  +Al3(Sc, Zr)) was observed within the investigated particles.
Go to article

Authors and Affiliations

Li Yukun
Du Xiaodong
Fu Junwei
Zhang Ya
Zhang Zhen
Zhou Shiang
Yucheng Wu
Download PDF Download RIS Download Bibtex

Abstract

The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.

Go to article

Authors and Affiliations

G. Dercz
I. Matuła
W. Gurdziel
N. Kuczera
Download PDF Download RIS Download Bibtex

Abstract

U-10wt.%Zr metallic fuel slugs containing rare-earth (RE: a rare-earth alloy comprising 53% Nd, 25% Ce, 16% Pr and 6% La) elements for a sodium-cooled fast reactor were fabricated by modified injection casting as an alternative method. The distribution, size and composition of the RE inclusions in the metallic fuel slugs were investigated according to the content of the RE inclusions. There were no observed casting defects, such as shrunk pipes, micro-shrinkage or hot tears formed during solidification, in the metallic fuel slugs fabricated by modified injection casting. Scanning electron micrographs and energy-dispersive X-ray spectroscopy (SEM-EDS) showed that the Zr and RE inclusions were uniformly distributed in the matrix and the composition of the RE inclusions was similar to that of a charged RE element. The content and the size of the RE inclusions increased slightly according to the charge content of the RE elements. RE inclusions in U-Zr alloys will have a positive effect on fuel performance due to their micro-size and high degree of distribution.

Go to article

Authors and Affiliations

Sang-Hun Lee
Ki-Hwan Kim
Seoung-Woo Kuk
Jeong-Yong Park
Ji-Hoon Choi
Download PDF Download RIS Download Bibtex

Abstract

The paper contains the results of the initial surface treatment influence on the properties of the medical Ti-6Al-7Nb alloy with a modified zirconium oxide layer deposited on its surface by sol-gel method. In the paper, the analysis of results of potentiodynamic studies is presented as well as its resistance to pitting corrosion and electrochemical impedance spectroscopy (EIS), macroscopic observation of the surface of samples and analysis of geometrical structure with the use Atomic Force Microscope (AFM) were performed. The studies were performed on two groups of samples depending on the graduation of the sand used in sandblasted process – 50 μm and 250 μm. Based on the obtained results it can be concluded that the type of the initial surface treatment preceding the surface modification of the Ti-6Al-7Nb has a significant effect on its properties.

Go to article

Authors and Affiliations

A. Woźniak
B. Ziębowicz
A. Ziębowicz
W. Walke
Download PDF Download RIS Download Bibtex

Abstract

Results of scientific researches show the trend of active using nitrides and borides of transition

metals and their combination in developing protective materials. While single elements

nitrides have been well studied, their multilayer modifications and combinations require

more detailed study. Physical-mechanical properties and structural-phase state of multilayer

coating according to the deposition conditions is an important task for the study.

It will be the analysis of physical-mechanical and electrical properties of coatings based on

refractory metals nitrides, their structure and phase composition and surface morphology

depending on the parameters of condensation. It was established the structure and behavior

of nano scale coatings based on refractory metals nitrides (Ti, Zr) depending on the size

of nano grains, texture, stress occurring in coatings.

Go to article

Authors and Affiliations

Anton Panda
Konstiantyn Dyadyura
Tatyana Hovorun
Oleksandr Pylypenko
Marina Dunaeva
Iveta Pandova
Download PDF Download RIS Download Bibtex

Abstract

Mating electrodes made of copper alloys are commonly used for welding galvanized steel sheets used in the production of car bodies. These alloys are characterized by high mechanical properties, a high level of electrical and thermal conductivity as well as the stability of these properties under changing conditions of current, thermal and mechanical load. Much careful attention was paid to the essence of the ongoing structural changes as well as to the mechanical properties in the welding process (RSW – Resistant Spot Welding) of steel sheets, including high-strength ones. There is a lack of research on structural changes and the related mechanical properties occurring in welding electrodes made of copper alloys caused by the welding process.
This study is devoted to these issues and contains a critical review of the research results enabling a better understanding of the relationships between the structure and properties of welding electrodes caused by the cyclic welding process. In order to illustrate the phenomena occurring during the welding process, both in the material to be welded and in the tip electrodes, hardness and structural tests were carried out on electrode samples before and after their exploitation. The data collected in the article supplements a certain lack of information in the literature regarding the microstructural aspects of the welding process of galvanized steel sheets for the production of car bodies. The conducted research may be the starting point for the search for more effective materials for the tip electrodes.
Go to article

Authors and Affiliations

Z. Rdzawski
1
ORCID: ORCID
P. Kwaśniewski
2
ORCID: ORCID
W. Głuchowski
1
ORCID: ORCID
M. Łagoda
1
ORCID: ORCID
M. Maleta
1
ORCID: ORCID
S. Boczkal
3
ORCID: ORCID
K. Franczak
2
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute of Non-Ferrous Metals, 5 Sowińskiego Street, 44-100 Gliwice, Poland
  2. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Light Metals Division, 19 Piłsudskiego Street, 32-050 Skawina, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the analysis of the effect of Zr on the properties of the aluminium alloy AlSi9Cu1Mg. The effect of Zr was evaluated depending on the change in mechanical properties and heat resistance during a gradual addition of Zr with an increase of 0.05 wt. % Zr. Half of the cast experimental samples from each variant were heat treated by precipitation hardening T6 (hereinafter HT). The measured values in both states indicate an improvement of the mechanical properties, especially in the experimental variants with a content of Zr ≥ 0.20 wt. %. In the evaluation of Rm, the most significant improvement occurred in the experimental variant with an addition of Zr 0.25 wt. % after HT and E in the experimental variant with addition of Zr 0.20 wt. % after HT. Thus, a difference was found from the results of the authors defining the positive effect of Zr, in particular at 0.15 wt. %. When evaluating the microstructure of the AlSi9Cu1Mg alloy after Zr alloying, Zr phases are already eliminated with the addition of Zr 0.10 wt. %. Especially at higher levels of Zr ≥ 0.20 wt. %, long needle phases with slightly cleaved morphology are visible in the metal matrix. It can be stated that a negative manifestation of Zr alloying is expressed by an increase in gassing of experimental alloys, especially in variants with a content of Zr ≥ 0.15 wt. %. Experimental samples were cast into ceramic moulds. The development of an experimental alloy AlSi9Cu1Mg alloyed with Zr would allow the production of a more sophisticated material applicable to thin-walled Al castings capable of operating at higher temperature loads.

Go to article

Authors and Affiliations

M. Matejka
ORCID: ORCID
M. Kuriš
D. Bolibruchova
R. Pastirčák
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibility of fabricating ceramic-metal composites by an innovative method of centrifugal slip casting in the magnetic field. It was examined whether the use of this method would allow obtaining a gradient concentration of metal particles in the ceramic matrix. In the applied technique, the horizontal rotation axis was used. The study investigated the effect of solid phase content on the properties and microstructure of the products. Water-based suspensions with 35, 40, 45 and 50 vol.% of solid-phase content were prepared with 10 vol.% additional of nickel powder. The viscosity of prepared slurries was considered. The gradient distribution of nickel particles in the zirconia matrix was observed on SEM. Vickers hardness of ZrO2-Ni composites has been measured. The research revealed that the physical properties depend on the volume fraction of solid content and increase as the volume of solid content increases.

Go to article

Authors and Affiliations

M. Wachowski
ORCID: ORCID
R. Kosturek
ORCID: ORCID
H. Winkler
A. Miazga
P. Lada
W. Kaszuwara
K. Konopka
J. Zygmuntowicz
Download PDF Download RIS Download Bibtex

Abstract

Friction Stir Process (FSP) was employed to develop Cupro-Nickel/Zirconium Carbide (Cu-Ni/ZrC) surface composites. Five different groove widths ranging from 0 to 1.4 mm were made in CuNi alloy plate to incorporate different ZrC volume fraction (0, 6, 12, 18 and 24 %) to study its influence on the structure and properties of Cu-Ni/ZrC composite. Processing was performed at a Tool Rotational Speed (TRS) of 1300 rpm, Tool Traverse Speed (TTS) of 40 mm/min with a constant axial load of 6 KN. The study is performed to analyse the influence of ZrC particles and the volume fraction of ZrC particles on the microstructural evolution, microhardness, mechanical properties, and tribological characteristics of the Cu-Ni/ZrC composite. The fracture and worn-out surfaces are analysed using Field Emission Scanning Electron Microscope (FESEM) to identify the fracture and wear mechanisms. The results demonstrated a simultaneous increase in microhardness and tensile strength of the developed composite because of grain refinement, uniform dispersion, and excellent bonding of ZrC with the matrix. Besides, the wear resistance increases with increase in volume fraction of ZrC particles in the composite. The surface morphology analysis revealed that the wear mechanism transits from severe wear regime to mild wear regime with increase in volume fraction of ZrC particles.

Go to article

Authors and Affiliations

T. Velmurugan
R. Subramanian
ORCID: ORCID
G. Suganya Priyadharshini
ORCID: ORCID
R. Raghu
Download PDF Download RIS Download Bibtex

Abstract

In this study, a simple and effective way to fabricate highly porous scaffolds with controlled porosity and pore size is demonstrated. Ti-7Zr-6Sn-3Mo shape memory alloy fibers were prepared through a melt overflow process. The scaffolds with porosity of 65-85% and large pores of 100-700 μm in size were fabricated by sintering the as-solidified fibers. Microstructures and transformation behaviors of the porous scaffolds were investigated by means of SEM, DSC and XRD. The scaffolds were composed of β phase at room temperature. Superelasticity with the superelastic recovery strain of 7.4% was achieved by β↔α” phase transformation. An effect of porosity on mechanical properties of porous scaffolds was investigated by using compressive test. As the porosity increased from 65% to 85%, elastic modulus and compressive strength decreased from 0.95 to 0.06 GPa and from 27 to 2 MPa, respectively.

Go to article

Authors and Affiliations

Yeon-Wook Kim
Bagus D. Erlangga
Dalhyun Do
Seong-Min Lee
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10Cr10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10–4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Go to article

Authors and Affiliations

Hocheol Song
Seongi Lee
Kwangmin Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this work, gel-casting of foams method was used to produce ZrO2 porous ceramics. The obtained foams with total porosity of 89.5 vol% were composed of approximately spherical cells having the mean diameter of 537 ± 153 μm interconnected by circular cell windows having the mean diameter of 152 ± 82 μm. Next, the ZrO2 foams were coated with fluorapatite (FA) and hydroxyapatite (HA) layers by slurry infiltration. The intermediate fluorapatite (FA) layer was introduced to prevent the chemical reactions between ZrO2 and HA at high temperatures during sintering process. The ZrO2 samples containing only HA coatings, were also tested, for comparison. The obtained ceramic biomaterials were subjected to in vitro tests in the simulated body fluid (SBF) solution. The results show that the ZrO2 foams with FA/HA layers possessed better bioactivity than the foams with the HA/HA coating.

Go to article

Authors and Affiliations

M. Potoczek
E. Kocyło
M. Krauz
A. Tłuczek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the influence of ZrO2 coating on Ti6Al7Nb titanium alloy depending on the method of deposition. The coatings were made by sol-gel method and atomic layer deposition (ALD). Wettability tests, pitting corrosion assessment and electrochemical impedance spectroscopy (EIS) were carried out in the paper. Complementary macro- and microscopic observations, roughness analysis by profilometric method and atomic force microscopy (AFM) were made. Based on the results obtained, it can be concluded that the type of method of depositing the layer on the surface of the material has a significant influence on its properties and that it should be taken into account during the process of the material improvement. Drawing on the findings presented, it can be inferred that roughness has a significant impact upon the surface wetttability of the tested surfaces and their related corrosion resistance. The obtainment of hydrophobic surfaces is for smaller rougidity values.

Go to article

Authors and Affiliations

A. Woźniak
O. Bialas
M. Adamiak
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of the addition of ZrO2 and Al2O3 ceramic powders to Cu-Mo-Cr alloy was studied by examining the physical properties of the composite material. The ceramic additives were selected based on the thermodynamic stability calculation of the Cu-Mo-Cr alloys. Elemental powders, in the ratio Cu:Mo:Cr = 60:30:10 (wt.%), and approximately 0-1.2 wt.% of ZrO2 and Al2O3 were mixed, and a green compact was formed by pressing the mixture under 186 MPa pressure and sintering at 1250°C for 5 h. The raw powders were evenly dispersed in the mixed powder, as observed by scanning electron microscopy. After sintering, the microstructures, densities, electrical conductivities, and hardness of the composites were evaluated. We found that the addition of ZrO2 and Al2O3 increased the hardness and decreased the electrical conductivity and density of the composites.
Go to article

Bibliography

[1] W.P. Li, R.L. Thomas, R.K. Smith, IEEE Trans. Plasma Sci. 29 (5), 744-748 (2001).
[2] X. Wei, J. Wang, Z. Yang, Z. Sun, D. Yu, X. Song, B. Ding, S. Yang, J. Alloys Compd. 509, 7116-7120 (2011).
[3] H . Fink, D. Gentsch, M. Heimbach, IEEE Trans. Plasma Sci. 31, 973-976 (2003).
[4] K. Maiti, M. Zinzuwadia, J. Nemade, J. Adv. Mat. Res. 585, 250- 254 (2012).
[5] C. Zhang, Z. Yang, Y. Wang, J. Mater. Process. Technol. 178, 283-286 (2006).
[6] C. Aguilar, D. Guzman, F. Castro, V. Martínez, F. de Las Cuevas, S. Lascano, T. Muthiah, Mater. Chem. Phys. 146, 493- 502 (2014).
[7] M . Venkatraman, J.P. Neumann, Bull. Alloy Phase Diagr. 8, 216- 220 (1987).
[8] X. Yang, S. Liang, X. Wang, P. Xiao, Z. Fan, Int. J. Refract. Met. 28, 305-311 (2010).
[9] S. Bera, I. Manna, Mater. Chem. Phys. 132, 109-118 (2012).
[10] A. Kumar, S.K. Pradhan, K. Jayasankar, M. Debata, R.K. Sharma, A. Mandal, J. Electron. Mater. 46, 1339-1347 (2017).
[11] D . Shen, Y. Zhu, W. Tong, An investigation on morphology and structure of Cu-Cr-Al2O3 powders prepared by mechanical milling, in: M. Wang, X. Zhou (Eds.), Proceedings of the 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Atlantis Press (2017).
[12] C. Cui, Y. Gao, S. Wei, High Temp. Mater. Proc. 36, 163- 166 (2016). DOI: https://doi.org/10.1515/htmp-2015-0180
[13] S. Bera, W. Lojkowsky, I. Manna, Metall. Mater. Trans. A. 40, 3276 (2009). DOI: https://doi.org/10.1007/s11661-009-0019-7
[14] J. Zygmuntowicz, A. Łukasiak, P. Piotrkiewicz, W. Kaszuwara, Compos. Theory Pract. 19, 43-49 (2019).
[15] S.D. Salman, Z.B. Lemon, Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 249-263 (2018). DOI : https://doi.org/10.1016/B978-0-08-102160-6.00013-5
[16] M . Elmahdy, G. Abouelmagd, A.A. Elnaeem Mazen, J. Mat. Res. 21, 1 (2018).
[17] M . Wang, N. Pan. J. Mater. Sci. Eng. R Rep. 63, 1-30 (2008).
[18] J. Kovác̆ik, Scripta Mater. 39, 153-157 (1998). DOI : https://doi.org/10.1016/S1359-6462(98)00147-X
[19] M. Orolinova, J. Ďurišin, K. Ďurišinová, Z. Danková, M. Besterci, Kovove Mater. 53, 409-414 (2015). DOI : https://doi.org/10.4149/km_2015_6_409
[20] Z.-Q. Wang, Y.-B. Zhong, X.-J. Rao, C. Wang, J. Wang, Z.- G. Zhang, W.-L. Ren, Z-M. Ren, Trans. Nonferrous Met. Soc. China 22, 1106-1111 (2012).
[21] J. Zygmuntowicz, J. Los, B. Kurowski, P. Piotrkiewicz, W. Kaszuwara, Adv. Compos. Hybrid Mater. 1-11 (2020). DOI : https://doi.org/10.1007/s42114-020-00188-8
Go to article

Authors and Affiliations

Yeong-Woo Cho
1 2
ORCID: ORCID
Jae-Jin Sim
1 2
ORCID: ORCID
Sung-Gue Heo
1 3
ORCID: ORCID
Hyun-Chul Kim
1 3
Yong-Kwan Lee
1 2
ORCID: ORCID
Jong-Soo Byeon
1 2
ORCID: ORCID
Yong-Tak Lee
1 2
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Seok-Jun Seo
1
ORCID: ORCID
Kyoung-Tae Park
1
ORCID: ORCID

  1. Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-50 Songdo-dong Yeonsoo-gu, Incheon 21999, Korea
  2. Inha University, Department of Advanced Materials Engineering, Incheon 22212, Korea
  3. Korea University, Department of Materials Science and Engineering, Seoul 02841, Korea

This page uses 'cookies'. Learn more