Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A double balanced passive mixer-based receiver operating in the 3-5 GHz UWB for medical applications is described in this paper. The receiver front-end circuit is composed of an inductorless low noise amplifier (LNA) followed by a fully differential voltage-driven double-balanced passive mixer. A duty cycle of 25% was chosen to eliminate overlap between LO signals, thereby improving receiver linearity. The LNA realizes a gain of 25.3 dB and a noise figure of 2.9 dB. The proposed receiver achieves an IIP3 of 3.14 dBm, an IIP2 of 17.5 dBm and an input return loss (S11) below -12.5dB. Designed in 0.18μm CMOS technology, the proposed mixer consumes 0.72pW from a 1.8V power supply. The designed receiver demonstrated a good ports isolation performance with LO_IF isolation of 60dB and RF_IF isolation of 78dB.
Go to article

Authors and Affiliations

Thaar A. Kareem
1
Hatem Trabelsi
1

  1. Systems Integration & Emerging Energies Laboratory, Electrical Engineering Department, National Engineers School of Sfax, University of Sfax, Sfax, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

This article presents a low-profile and flexible dualband AMC Antenna operating at 2.45/ 5.8 GHz for wireless local area network (WLAN) on-body antenna applications using textile materials. A dual-band artificial magnetic conductor (AMC) structure with a dual hexagonal shape was used to reduce back radiation, therefore specific absorption rate (SAR), and improve the antenna performance parameters. To study the antenna/body interaction, a suitable comprehension and detailed studies of the wave propagation in the vicinity of the human arm in different meteorological conditions were carried out to demonstrate the effects of the skin condition on the antenna performance parameters. The simulation and measurement results indicate that electromagnetic communication on wet skin is viable. Acceptable SAR values were obtained, revealing that the body is well immune from the antenna electromagnetic radiation in functional wearable conditions. The proposed wearable AMC antenna provided engaging simulation and measurement results. It satisfies users' comfort and safety properties, making it a good candidate for WLAN/WBAN applications.
Go to article

Authors and Affiliations

Wahida Bouamra
1
Imen Sfar
1
Ameni Mersani
1
Lotfi Osman
2
Jean-Marc Ribero
3

  1. Department of Physics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
  2. Higher School of Communication of Tunis, University of Carthage, Tunis, Tunisia
  3. University Nice-Sophia Antipolis, Sophia Antipolis, France

This page uses 'cookies'. Learn more